Heat-Pipe Cooling Technology for High-Speed Atm Switching Mcms

T. Kishimoto, S. Sasaki, K. Genda, K. Endo, K. Kaizu
{"title":"Heat-Pipe Cooling Technology for High-Speed Atm Switching Mcms","authors":"T. Kishimoto, S. Sasaki, K. Genda, K. Endo, K. Kaizu","doi":"10.1109/ICMCM.1994.753543","DOIUrl":null,"url":null,"abstract":"This paper describes an innovative heat-pipe cooling technology for high-speed ATM switching MCMs operating with a throughput of 40 Gb/s. Although high-speed ATM link wires are interconnected on the top surface of the MCMs, there is no room to coot the MCM by forced air convection, because the power and the system clock signal are supplied by the connector on the back side and peripheral of the MCM. We therefore attach a cold-plate to the back of each MCM. The condenser parts of the heat pipe, which is mounted behind the power supply printed circuit board, are cooled by low-velocity forced air. Total power dissipation including the power dissipation of the termination resistors is about 30 watts per MCM. With a 2 m/s forced air flow, this sub-switching element module operates at a throughput of 80 Gb/s (including 4 MCMs) with maximum junction temperature of less than 85 /spl deg/C. Measured thermal resistance between the switch LSI junction and air is about 6 /spl deg/C/W at an air flow of 2 m/s. This heat-pipe cooling system has small system footprint, compact hardware, and good cooling capability. We, demonstrate its effectiveness in cooling high-speed ATM switching MCMS operating with a throughput of 40 Gb/s.","PeriodicalId":363745,"journal":{"name":"Proceedings of the International Conference on Multichip Modules","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Multichip Modules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCM.1994.753543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes an innovative heat-pipe cooling technology for high-speed ATM switching MCMs operating with a throughput of 40 Gb/s. Although high-speed ATM link wires are interconnected on the top surface of the MCMs, there is no room to coot the MCM by forced air convection, because the power and the system clock signal are supplied by the connector on the back side and peripheral of the MCM. We therefore attach a cold-plate to the back of each MCM. The condenser parts of the heat pipe, which is mounted behind the power supply printed circuit board, are cooled by low-velocity forced air. Total power dissipation including the power dissipation of the termination resistors is about 30 watts per MCM. With a 2 m/s forced air flow, this sub-switching element module operates at a throughput of 80 Gb/s (including 4 MCMs) with maximum junction temperature of less than 85 /spl deg/C. Measured thermal resistance between the switch LSI junction and air is about 6 /spl deg/C/W at an air flow of 2 m/s. This heat-pipe cooling system has small system footprint, compact hardware, and good cooling capability. We, demonstrate its effectiveness in cooling high-speed ATM switching MCMS operating with a throughput of 40 Gb/s.
高速Atm开关微机热管冷却技术
本文介绍了一种用于40gb /s吞吐量的高速ATM交换mcm的创新热管冷却技术。虽然高速ATM链路在MCM的上表面相互连接,但由于电源和系统时钟信号是由MCM背面的连接器和外设提供的,因此没有空间通过强制空气对流为MCM降温。因此,我们在每个MCM的后面附加一个冷板。热管的冷凝器部分安装在电源印刷电路板的后面,通过低速强制空气冷却。包括终端电阻的功耗在内的总功耗约为每MCM 30瓦。在2m /s的强制气流下,该子开关元件模块的吞吐量为80gb /s(包括4个mcm),最高结温低于85 /spl℃。在2米/秒的气流下,测量到开关LSI结与空气之间的热阻约为6 /spl度/C/W。该热管冷却系统占地面积小,硬件紧凑,冷却性能好。我们证明了它在冷却吞吐量为40 Gb/s的高速ATM交换MCMS方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信