Sound event classification using bidirectional local binary pattern

Khine Zar Thwe
{"title":"Sound event classification using bidirectional local binary pattern","authors":"Khine Zar Thwe","doi":"10.1109/CSPC.2017.8305900","DOIUrl":null,"url":null,"abstract":"Sound event classification is a basic approach for real-world application. This paper presents feature extraction technique for classifying audio data. The audios are classified by combining of digital signal and digital image processing. Firstly, the audio data is partitioned into fixed length and each portion is transformed into spectrogram image. The, the distinct features are extracted from this spectrogram using bidirectional local binary pattern. Finally, support vector machine and k-NN are used for classification. The method is tested on an audio database of ESC-10 sound event data.","PeriodicalId":123773,"journal":{"name":"2017 International Conference on Signal Processing and Communication (ICSPC)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Signal Processing and Communication (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPC.2017.8305900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Sound event classification is a basic approach for real-world application. This paper presents feature extraction technique for classifying audio data. The audios are classified by combining of digital signal and digital image processing. Firstly, the audio data is partitioned into fixed length and each portion is transformed into spectrogram image. The, the distinct features are extracted from this spectrogram using bidirectional local binary pattern. Finally, support vector machine and k-NN are used for classification. The method is tested on an audio database of ESC-10 sound event data.
声音事件分类采用双向局部二值模式
声音事件分类是实际应用的一种基本方法。提出了一种用于音频数据分类的特征提取技术。采用数字信号和数字图像相结合的方法对音频进行分类。首先,将音频数据分割成固定长度的部分,并将每个部分转换成频谱图图像。利用双向局部二值模式从该谱图中提取出明显的特征。最后,利用支持向量机和k-NN进行分类。该方法在ESC-10声事件数据音频数据库上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信