Realtime Object Detection of Pantry Objects Using YOLOv5 Transfer Learning in Varying Lighting and Orientation

Lalainne Anne J. Abel, Toni Ceciro N. Oconer, J. D. dela Cruz
{"title":"Realtime Object Detection of Pantry Objects Using YOLOv5 Transfer Learning in Varying Lighting and Orientation","authors":"Lalainne Anne J. Abel, Toni Ceciro N. Oconer, J. D. dela Cruz","doi":"10.1109/IRASET52964.2022.9738370","DOIUrl":null,"url":null,"abstract":"This paper describes the use of YOLOv5 transfer learning from the COCO dataset to train and deploy a custom model to detect select pantry objects in various lighting and orientations using an original custom dataset with applied brightness and saturation augmentations. The results show that the trained model using the custom dataset obtained an mAP(0.5) of 0.9948 at 87 epochs of training and an accuracy of 100% detections and 95% average confidence level for the Koko Krunch set and an accuracy of 100% detections and 91% average confidence level for the Lady's Choice Mayonnaise set during validation.","PeriodicalId":377115,"journal":{"name":"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET52964.2022.9738370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper describes the use of YOLOv5 transfer learning from the COCO dataset to train and deploy a custom model to detect select pantry objects in various lighting and orientations using an original custom dataset with applied brightness and saturation augmentations. The results show that the trained model using the custom dataset obtained an mAP(0.5) of 0.9948 at 87 epochs of training and an accuracy of 100% detections and 95% average confidence level for the Koko Krunch set and an accuracy of 100% detections and 91% average confidence level for the Lady's Choice Mayonnaise set during validation.
基于YOLOv5迁移学习的食品储藏室物体实时检测
本文描述了使用COCO数据集的YOLOv5迁移学习来训练和部署一个自定义模型,以使用应用亮度和饱和度增强的原始自定义数据集检测各种照明和方向下的选定食品室对象。结果表明,使用自定义数据集训练的模型在87次训练时的mAP(0.5)为0.9948,Koko Krunch集的检测准确率为100%,平均置信度为95%,Lady’s Choice Mayonnaise集的检测准确率为100%,平均置信度为91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信