Quantum Phase Estimation Using Multivalued Logic

V. Parasa, M. Perkowski
{"title":"Quantum Phase Estimation Using Multivalued Logic","authors":"V. Parasa, M. Perkowski","doi":"10.1109/ISMVL.2011.47","DOIUrl":null,"url":null,"abstract":"Quantum phase estimation (QPE) is one of the most important quantum algorithms which is used as a subroutine for other important quantum algorithms like Shor's factoring algorithm, simulation of quantum systems, quantum counting and QFT on arbitrary Zp. In this paper we develop the theoretical framework for the multivalued quantum logic version of the QPE algorithm using d valued qudits and show a quantum circuit to implement QPE with a complexity of O(nlogn) single qudit operations. The multivalued QPE algorithm, when compared to the binary quantum logic version, turns out to be more robust and leads to a significant decrease in the number of qudits required along with drastic improvement in the precision and success probability. We derive the requirements to amplify the probability of success to a value very close to 1 (for a given precision), thereby generalizing the previously obtained result in the binary case. Also, we note that the failure probability of QPE algorithm decreases exponentially as d increases.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Quantum phase estimation (QPE) is one of the most important quantum algorithms which is used as a subroutine for other important quantum algorithms like Shor's factoring algorithm, simulation of quantum systems, quantum counting and QFT on arbitrary Zp. In this paper we develop the theoretical framework for the multivalued quantum logic version of the QPE algorithm using d valued qudits and show a quantum circuit to implement QPE with a complexity of O(nlogn) single qudit operations. The multivalued QPE algorithm, when compared to the binary quantum logic version, turns out to be more robust and leads to a significant decrease in the number of qudits required along with drastic improvement in the precision and success probability. We derive the requirements to amplify the probability of success to a value very close to 1 (for a given precision), thereby generalizing the previously obtained result in the binary case. Also, we note that the failure probability of QPE algorithm decreases exponentially as d increases.
基于多值逻辑的量子相位估计
量子相位估计(QPE)是最重要的量子算法之一,它是Shor因子分解算法、量子系统模拟、量子计数和任意Zp上的QFT等重要量子算法的子程序。在本文中,我们发展了QPE算法的多值量子逻辑版本的理论框架,并给出了一个量子电路来实现复杂度为O(nlogn)单量子运算的QPE。与二进制量子逻辑版本相比,多值QPE算法具有更强的鲁棒性,并且所需的量子数显著减少,精度和成功概率显著提高。我们推导出将成功概率放大到非常接近1的值的需求(对于给定的精度),从而推广之前在二进制情况下获得的结果。此外,我们注意到QPE算法的失效概率随着d的增加呈指数下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信