An Introduction to Systematic Sensitivity Analysis via Gaussian Quadrature

C. Arndt
{"title":"An Introduction to Systematic Sensitivity Analysis via Gaussian Quadrature","authors":"C. Arndt","doi":"10.21642/gtap.tp02","DOIUrl":null,"url":null,"abstract":"Economists recognize that results from simulation models are dependent, sometimes highly dependent, on values employed for critical exogenous variables. To account for this, analysts sometimes conduct sensitivity analysis with respect to key exogenous variables. This paper presents a practical approach for conducting systematic sensitivity analysis, called Gaussian quadrature. The approach views key exogenous variables as random variables with associated distributions. It produces estimates of means and standard deviations of model results while requiring a limited number of solves of the model. Under mild conditions, all of which hold with respect to the GTAP model, there is strong reason to believe that the estimates of means and standard deviations will be quite accurate.","PeriodicalId":281904,"journal":{"name":"GTAP Technical Paper Series","volume":"167 9 Suppl 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"154","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GTAP Technical Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21642/gtap.tp02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 154

Abstract

Economists recognize that results from simulation models are dependent, sometimes highly dependent, on values employed for critical exogenous variables. To account for this, analysts sometimes conduct sensitivity analysis with respect to key exogenous variables. This paper presents a practical approach for conducting systematic sensitivity analysis, called Gaussian quadrature. The approach views key exogenous variables as random variables with associated distributions. It produces estimates of means and standard deviations of model results while requiring a limited number of solves of the model. Under mild conditions, all of which hold with respect to the GTAP model, there is strong reason to believe that the estimates of means and standard deviations will be quite accurate.
基于高斯正交的系统灵敏度分析简介
经济学家认识到,模拟模型的结果依赖于,有时是高度依赖于关键外生变量的值。为了解释这一点,分析师有时会对关键的外生变量进行敏感性分析。本文提出了一种进行系统灵敏度分析的实用方法,称为高斯正交。该方法将关键的外生变量视为具有相关分布的随机变量。它产生模型结果的均值和标准差的估计值,同时需要模型的有限数量的解。在温和的条件下,所有这些条件都适用于GTAP模型,有充分的理由相信,均值和标准差的估计将是相当准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信