{"title":"Biotranport and biocompatibility of nanoporous biocapsules","authors":"L. Leoni, Tejal, Desai","doi":"10.1109/MMB.2000.893753","DOIUrl":null,"url":null,"abstract":"This study investigates whether nanoporous micromachined biocapsules, with uniform membrane pore sizes of 24.5 nm, can be used to encapsulate insulin secreting cells in vitro. This approach to cell encapsulation is based on microfabrication technology whereby immunoisolation membranes are bulk and surface micromachined to present uniform and well-controlled pore sizes as small as 10 nanometers, tailored surface chemistries, and precise microarchitectures. This study evaluates the behavior of insulinoma cells with micromachined membranes, the effect of matrix configurations within the biocapsule on cell behavior, as well as insulin and glucose transport through the biocapsule membranes.","PeriodicalId":141999,"journal":{"name":"1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.00EX451)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.00EX451)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMB.2000.893753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This study investigates whether nanoporous micromachined biocapsules, with uniform membrane pore sizes of 24.5 nm, can be used to encapsulate insulin secreting cells in vitro. This approach to cell encapsulation is based on microfabrication technology whereby immunoisolation membranes are bulk and surface micromachined to present uniform and well-controlled pore sizes as small as 10 nanometers, tailored surface chemistries, and precise microarchitectures. This study evaluates the behavior of insulinoma cells with micromachined membranes, the effect of matrix configurations within the biocapsule on cell behavior, as well as insulin and glucose transport through the biocapsule membranes.