Commutation for Functions of Small Arity Over a Finite Set

Hajime Machida, I. Rosenberg
{"title":"Commutation for Functions of Small Arity Over a Finite Set","authors":"Hajime Machida, I. Rosenberg","doi":"10.1109/ISMVL.2018.00023","DOIUrl":null,"url":null,"abstract":"Commutation is defined for multi-variable functions on a finite base set. For a set F of functions the centralizer F* of F is the set of functions which commute with all functions in F. For a function f a minor of f is a function obtained from f by iden- tifying some of its variables. An important observation is that the centralizer f* of f is a subclone of the centralizer of any minor of f, which motivates the study of the centralizers of functions of small arity. In this paper we determine the centralizers of all 2-variable functions over the two-element set. Then, as a generalization of AND on the 2-element set we consider the function Min on the k-element set, k > 1, and characterize the centralizer of Min using a term from lattice theory.","PeriodicalId":434323,"journal":{"name":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2018.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Commutation is defined for multi-variable functions on a finite base set. For a set F of functions the centralizer F* of F is the set of functions which commute with all functions in F. For a function f a minor of f is a function obtained from f by iden- tifying some of its variables. An important observation is that the centralizer f* of f is a subclone of the centralizer of any minor of f, which motivates the study of the centralizers of functions of small arity. In this paper we determine the centralizers of all 2-variable functions over the two-element set. Then, as a generalization of AND on the 2-element set we consider the function Min on the k-element set, k > 1, and characterize the centralizer of Min using a term from lattice theory.
有限集上小幂函数的交换
定义了有限基集上多变量函数的交换。对于函数集合F, F的中心化器F*是与F中的所有函数交换的函数集合。对于函数F, F的次元是由F通过辨识它的一些变量而得到的函数。一个重要的观察结果是f的扶正器f*是f的任何次元的扶正器的子克隆,这激发了对小密度函数的扶正器的研究。本文确定了两元集合上所有2变量函数的中心化器。然后,作为与在2元集合上的推广,我们考虑了k元集合上的函数Min, k > 1,并利用格理论中的一个项刻画了Min的中心化子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信