A continuous-time recurrent neural network for real-time support vector regression

Qingshan Liu, Yan Zhao
{"title":"A continuous-time recurrent neural network for real-time support vector regression","authors":"Qingshan Liu, Yan Zhao","doi":"10.1109/CICA.2013.6611683","DOIUrl":null,"url":null,"abstract":"This paper presents a continuous-time recurrent neural network described by differential equations for realtime support vector regression (SVR). The SVR is first formulated as a convex quadratic programming problem, and then a continuous-time recurrent neural network with one-layer structure is designed for training the support vector machine. Furthermore, simulation results on an illustrative example are given to demonstrate the effectiveness and performance of the proposed neural network.","PeriodicalId":424622,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2013.6611683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a continuous-time recurrent neural network described by differential equations for realtime support vector regression (SVR). The SVR is first formulated as a convex quadratic programming problem, and then a continuous-time recurrent neural network with one-layer structure is designed for training the support vector machine. Furthermore, simulation results on an illustrative example are given to demonstrate the effectiveness and performance of the proposed neural network.
实时支持向量回归的连续时间递归神经网络
提出了一种用微分方程描述的连续时间递归神经网络用于实时支持向量回归。首先将支持向量机问题表述为一个凸二次规划问题,然后设计一个单层结构的连续时间递归神经网络来训练支持向量机。最后,给出了一个实例的仿真结果,验证了所提神经网络的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信