Modified K-means algorithm for automatic stimation of number of clusters using advanced visual assessment of cluster tendency

D. Sharmilarani, N. Kousika, G Komarasamy
{"title":"Modified K-means algorithm for automatic stimation of number of clusters using advanced visual assessment of cluster tendency","authors":"D. Sharmilarani, N. Kousika, G Komarasamy","doi":"10.1109/ISCO.2014.7103951","DOIUrl":null,"url":null,"abstract":"One of the major problems in cluster analysis is the determination of the number of clusters in unlabeled data, which is a basic input for most clustering algorithms. In our paper, we investigate a new method for automatically estimating the number of clusters in unlabeled data sets, which is based on an existing algorithm for Spectral Visual Assessment of Cluster Tendency (SpecVAT) of a data set, using several common image and signal processing techniques. Its basic steps include 1) generating a VAT image of an input dissimilarity matrix, 2) Constructing Laplacian matrix 3) Normalize the rows and 4) Apply SpecVAT. Our new method is nearly “automatic,” depending on just one easy-to-set parameter. In this paper we propose direct visual validation method and divergence matrix for finding the automatic clustering. The experimental result shows that the proposed algorithm is much better than the other algorithms.","PeriodicalId":119329,"journal":{"name":"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCO.2014.7103951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the major problems in cluster analysis is the determination of the number of clusters in unlabeled data, which is a basic input for most clustering algorithms. In our paper, we investigate a new method for automatically estimating the number of clusters in unlabeled data sets, which is based on an existing algorithm for Spectral Visual Assessment of Cluster Tendency (SpecVAT) of a data set, using several common image and signal processing techniques. Its basic steps include 1) generating a VAT image of an input dissimilarity matrix, 2) Constructing Laplacian matrix 3) Normalize the rows and 4) Apply SpecVAT. Our new method is nearly “automatic,” depending on just one easy-to-set parameter. In this paper we propose direct visual validation method and divergence matrix for finding the automatic clustering. The experimental result shows that the proposed algorithm is much better than the other algorithms.
改进的K-means算法,利用先进的聚类趋势视觉评估自动估计聚类数量
聚类分析的主要问题之一是确定未标记数据中的聚类数量,这是大多数聚类算法的基本输入。在本文中,我们研究了一种自动估计未标记数据集中聚类数量的新方法,该方法基于现有的数据集聚类趋势的光谱视觉评估(SpecVAT)算法,使用几种常见的图像和信号处理技术。其基本步骤包括:1)生成输入不相似矩阵的增值税图像,2)构造拉普拉斯矩阵,3)归一化行,4)应用SpecVAT。我们的新方法几乎是“自动的”,只依赖于一个易于设置的参数。本文提出了直接视觉验证方法和发散矩阵来寻找自动聚类。实验结果表明,该算法的性能明显优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信