{"title":"Compositional synthesis via a convex parameterization of assume-guarantee contracts","authors":"K. Ghasemi, Sadra Sadraddini, C. Belta","doi":"10.1145/3365365.3382212","DOIUrl":null,"url":null,"abstract":"We develop an assume-guarantee framework for control of large scale linear (time-varying) systems from finite-time reach and avoid or infinite-time invariance specifications. The contracts describe the admissible set of states and controls for individual subsystems. A set of contracts compose correctly if mutual assumptions and guarantees match in a way that we formalize. We propose a rich parameterization of contracts such that the set of parameters that compose correctly is convex. Moreover, we design a potential function of parameters that describes the distance of contracts from a correct composition. Thus, the verification and synthesis for the aggregate system are broken to solving small convex programs for individual subsystems, where correctness is ultimately achieved in a compositional way. Illustrative examples demonstrate the scalability of our method.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365365.3382212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
We develop an assume-guarantee framework for control of large scale linear (time-varying) systems from finite-time reach and avoid or infinite-time invariance specifications. The contracts describe the admissible set of states and controls for individual subsystems. A set of contracts compose correctly if mutual assumptions and guarantees match in a way that we formalize. We propose a rich parameterization of contracts such that the set of parameters that compose correctly is convex. Moreover, we design a potential function of parameters that describes the distance of contracts from a correct composition. Thus, the verification and synthesis for the aggregate system are broken to solving small convex programs for individual subsystems, where correctness is ultimately achieved in a compositional way. Illustrative examples demonstrate the scalability of our method.