Italo Belli, Matteo Parigi Polverini, Arturo Laurenzi, E. Hoffman, P. Rocco, N. Tsagarakis
{"title":"Optimization-Based Quadrupedal Hybrid Wheeled-Legged Locomotion","authors":"Italo Belli, Matteo Parigi Polverini, Arturo Laurenzi, E. Hoffman, P. Rocco, N. Tsagarakis","doi":"10.1109/HUMANOIDS47582.2021.9555780","DOIUrl":null,"url":null,"abstract":"This paper presents a trajectory optimization approach to the motion generation problem of hybrid locomotion strategies for a wheeled-legged quadrupedal robot with steerable wheels. To this end, traditional Single Rigid Body Dynamics has been employed and extended by adding a unicycle model for each leg, conveniently incorporating the nonholonomic rolling constraints. The proposed approach can generate hybrid locomotion strategies as well as pure driving and legged locomotion with minimum effort for the user. The effectiveness of the proposed approach has been experimentally validated on the humanoid quadruped CENTAURO, employing a hierarchical inverse kinematics engine to track the planned motions.","PeriodicalId":320510,"journal":{"name":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS47582.2021.9555780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper presents a trajectory optimization approach to the motion generation problem of hybrid locomotion strategies for a wheeled-legged quadrupedal robot with steerable wheels. To this end, traditional Single Rigid Body Dynamics has been employed and extended by adding a unicycle model for each leg, conveniently incorporating the nonholonomic rolling constraints. The proposed approach can generate hybrid locomotion strategies as well as pure driving and legged locomotion with minimum effort for the user. The effectiveness of the proposed approach has been experimentally validated on the humanoid quadruped CENTAURO, employing a hierarchical inverse kinematics engine to track the planned motions.