{"title":"Design for Manufacturing? Design for Yield!!!","authors":"M. Levitt","doi":"10.1109/ISQED.2004.1283643","DOIUrl":null,"url":null,"abstract":"Today’s nanometer-scale designs are two orders-of-magnitude more complex than designs were in the early 1990s and are commonly manufactured with processes at or below the 130nm feature size. This has brought about a fundamental change in the way design teams must approach the release for their design data to their manufacturing partners. In the past, once a design was taped out and proven to be functional, the responsibility for ramping yield and enhancing the profitability of a design was primarily the responsibility of the manufacturing partner. This is no longer possible at 130nm and below. Once a manufacturing process has stabilized, direct action must be taken by each and every design team to “tune” their design for yield. Design-specific yield enhancement is the new frontier in EDA and while it includes the traditional Design for Manufacturing (DFM) technologies, it also covers much more. Failure to consider yield-degrading effects in IR drop, signal integrity, electro migration, and process variation will result is severe downstream problems in timing closure, functional errors during system bring-up, and the inability to achieve silicon yield and quality targets. In this talk Marc Levitt will discuss what is needed in a new generation design-for-yield tool suite to address the quality of silicon at its source.","PeriodicalId":302936,"journal":{"name":"IEEE International Symposium on Quality Electronic Design","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2004.1283643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Today’s nanometer-scale designs are two orders-of-magnitude more complex than designs were in the early 1990s and are commonly manufactured with processes at or below the 130nm feature size. This has brought about a fundamental change in the way design teams must approach the release for their design data to their manufacturing partners. In the past, once a design was taped out and proven to be functional, the responsibility for ramping yield and enhancing the profitability of a design was primarily the responsibility of the manufacturing partner. This is no longer possible at 130nm and below. Once a manufacturing process has stabilized, direct action must be taken by each and every design team to “tune” their design for yield. Design-specific yield enhancement is the new frontier in EDA and while it includes the traditional Design for Manufacturing (DFM) technologies, it also covers much more. Failure to consider yield-degrading effects in IR drop, signal integrity, electro migration, and process variation will result is severe downstream problems in timing closure, functional errors during system bring-up, and the inability to achieve silicon yield and quality targets. In this talk Marc Levitt will discuss what is needed in a new generation design-for-yield tool suite to address the quality of silicon at its source.