Time Series Analysis for Digital Twins in Green Shipping

Lazaros Avgeridis, Konstantinos Lentzos, Dimitrios Skoutas, I. Emiris
{"title":"Time Series Analysis for Digital Twins in Green Shipping","authors":"Lazaros Avgeridis, Konstantinos Lentzos, Dimitrios Skoutas, I. Emiris","doi":"10.5957/some-2023-028","DOIUrl":null,"url":null,"abstract":"A promising way for the waterborne industry towards decarbonization and emissions reduction is through digitalization and in particular via Digital Twins (DTs) technology. In this context, the DT provides insights for optimal decision-making, predicting potential future events, or even detecting irregularities in the behavior of the ship to reduce its carbon emissions and energy consumption. To achieve this, we propose an architecture for automated data capture, processing, and analysis. The analysis component of this infrastructure leverages machine learning (ML) algorithms for time series data, such as anomaly detection and forecasting. Importantly, to understand how these algorithms make a certain prediction we also provide a detailed look at current approaches used to interpret these models. Finally, we demonstrate a practical use case, where time series analysis can prove especially useful when applied to real-world vessel data.","PeriodicalId":382692,"journal":{"name":"Day 1 Tue, March 07, 2023","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, March 07, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/some-2023-028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A promising way for the waterborne industry towards decarbonization and emissions reduction is through digitalization and in particular via Digital Twins (DTs) technology. In this context, the DT provides insights for optimal decision-making, predicting potential future events, or even detecting irregularities in the behavior of the ship to reduce its carbon emissions and energy consumption. To achieve this, we propose an architecture for automated data capture, processing, and analysis. The analysis component of this infrastructure leverages machine learning (ML) algorithms for time series data, such as anomaly detection and forecasting. Importantly, to understand how these algorithms make a certain prediction we also provide a detailed look at current approaches used to interpret these models. Finally, we demonstrate a practical use case, where time series analysis can prove especially useful when applied to real-world vessel data.
绿色航运中数字孪生的时间序列分析
数字化,特别是数字孪生(DTs)技术,是水运行业实现脱碳和减排的一种有希望的方式。在这种情况下,DT可以为最佳决策提供见解,预测潜在的未来事件,甚至检测船舶行为中的违规行为,以减少其碳排放和能源消耗。为了实现这一点,我们提出了一个用于自动数据捕获、处理和分析的体系结构。该基础设施的分析组件利用机器学习(ML)算法来处理时间序列数据,例如异常检测和预测。重要的是,为了理解这些算法如何做出某种预测,我们还详细介绍了用于解释这些模型的当前方法。最后,我们演示了一个实际用例,其中时间序列分析在应用于实际船舶数据时特别有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信