A hybrid layout algorithm for sub-quadratic multidimensional scaling

A. Morrison, G. Ross, M. Chalmers
{"title":"A hybrid layout algorithm for sub-quadratic multidimensional scaling","authors":"A. Morrison, G. Ross, M. Chalmers","doi":"10.1109/INFVIS.2002.1173161","DOIUrl":null,"url":null,"abstract":"Many clustering and layout techniques have been used for structuring and visualising complex data. This paper is inspired by a number of such contemporary techniques and presents a novel hybrid approach based upon stochastic sampling, interpolation and spring models. We use Chalmers' 1996 O(N/sup 2/) spring model as a benchmark when evaluating our technique, comparing layout quality and run times using data sets of synthetic and real data. Our algorithm runs in O(N/spl radic/N) and executes significantly faster than Chalmers' 1996 algorithm, whilst producing superior layouts. In reducing complexity and run time, we allow the visualisation of data sets of previously infeasible size. Our results indicate that our method is a solid foundation for interactive and visual exploration of data.","PeriodicalId":293232,"journal":{"name":"IEEE Symposium on Information Visualization, 2002. INFOVIS 2002.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Information Visualization, 2002. INFOVIS 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.2002.1173161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

Many clustering and layout techniques have been used for structuring and visualising complex data. This paper is inspired by a number of such contemporary techniques and presents a novel hybrid approach based upon stochastic sampling, interpolation and spring models. We use Chalmers' 1996 O(N/sup 2/) spring model as a benchmark when evaluating our technique, comparing layout quality and run times using data sets of synthetic and real data. Our algorithm runs in O(N/spl radic/N) and executes significantly faster than Chalmers' 1996 algorithm, whilst producing superior layouts. In reducing complexity and run time, we allow the visualisation of data sets of previously infeasible size. Our results indicate that our method is a solid foundation for interactive and visual exploration of data.
一种亚二次多维尺度的混合布局算法
许多聚类和布局技术已用于结构化和可视化复杂数据。本文的灵感来自于许多这样的当代技术,并提出了一种基于随机抽样、插值和弹簧模型的新型混合方法。我们使用Chalmers 1996年的O(N/sup 2/)弹簧模型作为基准来评估我们的技术,使用合成数据集和真实数据集比较布局质量和运行时间。我们的算法以0 (N/spl径向/N)运行,执行速度明显快于Chalmers的1996年算法,同时产生更好的布局。为了减少复杂性和运行时间,我们允许可视化以前不可行的数据集。我们的结果表明,我们的方法为数据的交互式和可视化探索奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信