Importance sampling for stochastic recurrence equations with heavy tailed increments

J. Blanchet, H. Hult, K. Leder
{"title":"Importance sampling for stochastic recurrence equations with heavy tailed increments","authors":"J. Blanchet, H. Hult, K. Leder","doi":"10.1109/WSC.2011.6148074","DOIUrl":null,"url":null,"abstract":"Importance sampling in the setting of heavy tailed random variables has generally focused on models with additive noise terms. In this work we extend this concept by considering importance sampling for the estimation of rare events in Markov chains of the form equation where the B<inf>n</inf>'s and A<inf>n</inf>'s are independent sequences of independent and identically distributed (i.i.d.) random variables and the B<inf>n</inf>'s are regularly varying and the A<inf>n</inf>'s are suitably light tailed relative to B<inf>n</inf>. We focus on efficient estimation of the rare event probability P(X<inf>n</inf> > b) as b↗∞. In particular we present a strongly efficient importance sampling algorithm for estimating these probabilities, and present a numerical example showcasing the strong efficiency.","PeriodicalId":246140,"journal":{"name":"Proceedings of the 2011 Winter Simulation Conference (WSC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2011.6148074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Importance sampling in the setting of heavy tailed random variables has generally focused on models with additive noise terms. In this work we extend this concept by considering importance sampling for the estimation of rare events in Markov chains of the form equation where the Bn's and An's are independent sequences of independent and identically distributed (i.i.d.) random variables and the Bn's are regularly varying and the An's are suitably light tailed relative to Bn. We focus on efficient estimation of the rare event probability P(Xn > b) as b↗∞. In particular we present a strongly efficient importance sampling algorithm for estimating these probabilities, and present a numerical example showcasing the strong efficiency.
重尾增量随机递归方程的重要抽样
在重尾随机变量的设置中,重要性抽样通常集中在具有加性噪声项的模型上。在这项工作中,我们通过考虑对形式方程的马尔可夫链中罕见事件估计的重要抽样来扩展这一概念,其中Bn和An是独立且同分布(i.i.d)随机变量的独立序列,Bn是规则变化的,An相对于Bn是适当的轻尾。我们重点研究稀有事件概率P(Xn > b)作为b∞的有效估计。特别地,我们提出了一种高效的重要抽样算法来估计这些概率,并给出了一个数值例子来证明这种算法的高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信