Online Monitoring of Time-varying Process Using Probabilistic Principal Component Analysis

Yuxuan Dong, Ying Liu, Suijun Liu, Cheng Lu, Shihua Luo, Jiu-sun Zeng
{"title":"Online Monitoring of Time-varying Process Using Probabilistic Principal Component Analysis","authors":"Yuxuan Dong, Ying Liu, Suijun Liu, Cheng Lu, Shihua Luo, Jiu-sun Zeng","doi":"10.1109/DDCLS58216.2023.10166692","DOIUrl":null,"url":null,"abstract":"This paper develops a moving window probabilistic PCA(MW PPCA) online process monitoring method for moni-toring time-varying industrial process. First, PPCA model and the method of iteratively solving the parameters of PPCA model by variational inference are introduced. On the basis of the PPCA model, three monitoring statistic, ${T}^{2}, SPE$ and $Var$, are in-troduced also. In order to solve the time-varying trend, this paper further utilizes a sequential update procedure for PPCA model which is based on a moving window, and uses the streaming variational inference method to recursively update the parameters of PPCA model in each window. Then, the non central chi square distribution approximation is used to solve the control limits of the three statistics under the confidence limits in order to adapt to the process changes more effectively, so as to update the control limits. Finally, the effectiveness of the distillation process is verified.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"1206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10166692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a moving window probabilistic PCA(MW PPCA) online process monitoring method for moni-toring time-varying industrial process. First, PPCA model and the method of iteratively solving the parameters of PPCA model by variational inference are introduced. On the basis of the PPCA model, three monitoring statistic, ${T}^{2}, SPE$ and $Var$, are in-troduced also. In order to solve the time-varying trend, this paper further utilizes a sequential update procedure for PPCA model which is based on a moving window, and uses the streaming variational inference method to recursively update the parameters of PPCA model in each window. Then, the non central chi square distribution approximation is used to solve the control limits of the three statistics under the confidence limits in order to adapt to the process changes more effectively, so as to update the control limits. Finally, the effectiveness of the distillation process is verified.
基于概率主成分分析的时变过程在线监测
本文提出了一种移动窗口概率主成分分析(mppca)在线过程监测方法,用于监测时变工业过程。首先,介绍了PPCA模型和变分推理迭代求解PPCA模型参数的方法。在PPCA模型的基础上,引入了3个监测统计量${T}^{2}、SPE$和$Var$。为了解决时变趋势,本文进一步采用了基于移动窗口的PPCA模型的顺序更新过程,并使用流变分推理方法递归地更新PPCA模型在每个窗口中的参数。然后,采用非中心卡方分布近似求解置信限下三个统计量的控制限,以便更有效地适应过程变化,从而更新控制限。最后,验证了该蒸馏工艺的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信