Classification of Text regions in a Document Image by Analyzing the properties of Connected Components

Showmik Bhowmik, R. Sarkar
{"title":"Classification of Text regions in a Document Image by Analyzing the properties of Connected Components","authors":"Showmik Bhowmik, R. Sarkar","doi":"10.1109/ASPCON49795.2020.9276688","DOIUrl":null,"url":null,"abstract":"Document layout analysis is a mandatory step in order to develop an effective and complete document image processing system. In this step, an input document image is segmented into different regions. These regions are then classified as text or non-text. The non-text regions are further classified into different sub-classes like table, image, separator, graphic, chart etc., whereas text regions are classified as title, paragraph, header, footer, caption, drop-capital etc. In this paper, a connected component analysis based method is presented to classify a particular text region as title, heading, paragraph, drop-capital, header or footer. In doing so, the positional and size-based information of a region along with its alignment property is applied. To showcase the effectiveness of this method, the output of the segmentation system BINYAS is provided both with and without the present text region classification module for some sample document images taken from RDCL 2017 dataset.","PeriodicalId":193814,"journal":{"name":"2020 IEEE Applied Signal Processing Conference (ASPCON)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Applied Signal Processing Conference (ASPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPCON49795.2020.9276688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Document layout analysis is a mandatory step in order to develop an effective and complete document image processing system. In this step, an input document image is segmented into different regions. These regions are then classified as text or non-text. The non-text regions are further classified into different sub-classes like table, image, separator, graphic, chart etc., whereas text regions are classified as title, paragraph, header, footer, caption, drop-capital etc. In this paper, a connected component analysis based method is presented to classify a particular text region as title, heading, paragraph, drop-capital, header or footer. In doing so, the positional and size-based information of a region along with its alignment property is applied. To showcase the effectiveness of this method, the output of the segmentation system BINYAS is provided both with and without the present text region classification module for some sample document images taken from RDCL 2017 dataset.
基于连通成分属性的文档图像文本区域分类
文档布局分析是开发有效、完整的文档图像处理系统的必要步骤。在这一步中,输入文档图像被分割成不同的区域。然后将这些区域分类为文本或非文本。非文本区域被进一步分类为不同的子类,如表格、图像、分隔符、图形、图表等,而文本区域被分类为标题、段落、页眉、页脚、标题、大写字母等。本文提出了一种基于连通成分分析的方法,将特定文本区域划分为标题、标题、段落、大写字母、页眉或页脚。在此过程中,将应用区域的位置和基于大小的信息及其对齐属性。为了展示该方法的有效性,对来自RDCL 2017数据集的一些样本文档图像,分别提供了有和没有本文本区域分类模块的分割系统BINYAS的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信