{"title":"A 900 MHz, 0.9 V low-power CMOS downconversion mixer","authors":"C. J. Debono, F. Maloberti, J. Micaller","doi":"10.1109/CICC.2001.929835","DOIUrl":null,"url":null,"abstract":"A low-voltage, low-power mixer operating at a supply voltage of 0.9 V while consuming 4.7 mW is presented. The circuit achieves the multiplication using current mode processing. Moreover, non-conventional differential pairs that do not require current tail generators are utilized. The circuit has been fabricated in a standard double-poly, triple-metal 0.35 /spl mu/m CMOS process having a threshold voltage of 0.6 V. Measurement results for 900 MHz and 800 MHz input signals indicate that the circuit has an IIP3 of 3.5 dBm, a 1 dB compression point of -8 dBm and a noise figure of 13.5 dB.","PeriodicalId":101717,"journal":{"name":"Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2001.929835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
A low-voltage, low-power mixer operating at a supply voltage of 0.9 V while consuming 4.7 mW is presented. The circuit achieves the multiplication using current mode processing. Moreover, non-conventional differential pairs that do not require current tail generators are utilized. The circuit has been fabricated in a standard double-poly, triple-metal 0.35 /spl mu/m CMOS process having a threshold voltage of 0.6 V. Measurement results for 900 MHz and 800 MHz input signals indicate that the circuit has an IIP3 of 3.5 dBm, a 1 dB compression point of -8 dBm and a noise figure of 13.5 dB.