BinaryEye: A 20 kfps Streaming Camera System on FPGA with Real-Time On-Device Image Recognition Using Binary Neural Networks

Petar Jokic, S. Emery, L. Benini
{"title":"BinaryEye: A 20 kfps Streaming Camera System on FPGA with Real-Time On-Device Image Recognition Using Binary Neural Networks","authors":"Petar Jokic, S. Emery, L. Benini","doi":"10.1109/SIES.2018.8442108","DOIUrl":null,"url":null,"abstract":"Streaming high-speed cameras pose a major challenge to distributed cyber-physical and IoT systems, because large data volumes need to be transferred under stringent realtime constraints. Edge processing can mitigate the data deluge by extracting relevant information from image data on-device with low latency. This work presents an FPGA-based 20 kfps streaming camera system, which can classify regions of interest (ROI) within a frame with a binarized neural network (BNN) in realtime streaming mode, achieving massive data reduction. BNNs have the potential to enable energy-efficient image classifications for on-device processing. We demonstrate our system in a case study with a simple real-time BNN classifier achieving 19.28 us latency at 0.52 W power consumption and resulting in a 980x data reduction. We compare external image processing with this result, showing 3x energy savings, and discuss the used HDL/HLS design flow for BNN implementation.","PeriodicalId":236091,"journal":{"name":"2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIES.2018.8442108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Streaming high-speed cameras pose a major challenge to distributed cyber-physical and IoT systems, because large data volumes need to be transferred under stringent realtime constraints. Edge processing can mitigate the data deluge by extracting relevant information from image data on-device with low latency. This work presents an FPGA-based 20 kfps streaming camera system, which can classify regions of interest (ROI) within a frame with a binarized neural network (BNN) in realtime streaming mode, achieving massive data reduction. BNNs have the potential to enable energy-efficient image classifications for on-device processing. We demonstrate our system in a case study with a simple real-time BNN classifier achieving 19.28 us latency at 0.52 W power consumption and resulting in a 980x data reduction. We compare external image processing with this result, showing 3x energy savings, and discuss the used HDL/HLS design flow for BNN implementation.
BinaryEye:一种基于FPGA的20 kfps流摄像机系统,采用二进制神经网络实现实时设备上图像识别
流媒体高速摄像机对分布式网络物理和物联网系统构成了重大挑战,因为需要在严格的实时限制下传输大量数据。边缘处理可以通过低延迟从设备上的图像数据中提取相关信息来缓解数据泛滥。本文提出了一种基于fpga的20 kfps流摄像机系统,该系统可以在实时流模式下使用二值化神经网络(BNN)对帧内的感兴趣区域(ROI)进行分类,实现了大规模的数据缩减。bnn具有实现设备上处理的节能图像分类的潜力。我们在一个简单的实时BNN分类器的案例研究中展示了我们的系统,在0.52 W的功耗下实现了19.28 us的延迟,并减少了980倍的数据。我们将外部图像处理与此结果进行了比较,显示节省了3倍的能量,并讨论了用于BNN实现的HDL/HLS设计流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信