Visual Instance Retrieval for Cultural Heritage Artifacts using Feature Pyramid Network

Luepol Pipanmekaporn, Suwatchai Kamonsantiroj
{"title":"Visual Instance Retrieval for Cultural Heritage Artifacts using Feature Pyramid\n Network","authors":"Luepol Pipanmekaporn, Suwatchai Kamonsantiroj","doi":"10.54941/ahfe1002933","DOIUrl":null,"url":null,"abstract":"Digitized photographs are commonly employed by archaeologists to assist in\n uncovering ancient artefacts. However, locating a specific image within a vast\n collection remains a significant obstacle. The metadata associated with images is often\n sparse, marking keyword-based searches difficult. In this paper, we propose a new visual\n search method to improve retrieval performance by utilizing visual descriptors generated\n from a feature pyramid network. This network is a convolutional neural network (CNN)\n model that incorporates additional modules for feature extraction and enhancement. The\n first module encodes an image into regional features through spatial pyramid pooling,\n while the second module emphasizes distinctive spatial features. Additionally, we\n introduce a two-stage feature attention to enhance feature quality and a compact\n descriptor is then formed by aggregating these features for searching the image. We\n tested our proposed method on benchmark datasets and a public vast collection of\n Thailand’s ancient artefacts. Results from our experiments show that the proposed method\n achieves 77.9% of mean average precision, which outperforms existing CNN-based visual\n descriptors.","PeriodicalId":383834,"journal":{"name":"Human Interaction and Emerging Technologies (IHIET-AI 2023): Artificial\n Intelligence and Future Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Interaction and Emerging Technologies (IHIET-AI 2023): Artificial\n Intelligence and Future Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1002933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digitized photographs are commonly employed by archaeologists to assist in uncovering ancient artefacts. However, locating a specific image within a vast collection remains a significant obstacle. The metadata associated with images is often sparse, marking keyword-based searches difficult. In this paper, we propose a new visual search method to improve retrieval performance by utilizing visual descriptors generated from a feature pyramid network. This network is a convolutional neural network (CNN) model that incorporates additional modules for feature extraction and enhancement. The first module encodes an image into regional features through spatial pyramid pooling, while the second module emphasizes distinctive spatial features. Additionally, we introduce a two-stage feature attention to enhance feature quality and a compact descriptor is then formed by aggregating these features for searching the image. We tested our proposed method on benchmark datasets and a public vast collection of Thailand’s ancient artefacts. Results from our experiments show that the proposed method achieves 77.9% of mean average precision, which outperforms existing CNN-based visual descriptors.
基于特征金字塔网络的文物视觉实例检索
数字化照片通常被考古学家用来协助发掘古代文物。然而,在一个庞大的集合中定位一个特定的图像仍然是一个重大的障碍。与图像相关的元数据通常是稀疏的,这使得基于关键字的搜索变得困难。本文提出了一种新的视觉搜索方法,利用特征金字塔网络生成的视觉描述符来提高检索性能。该网络是一个卷积神经网络(CNN)模型,其中包含用于特征提取和增强的附加模块。第一个模块通过空间金字塔池化将图像编码为区域特征,第二个模块强调鲜明的空间特征。此外,我们引入了两阶段特征关注来提高特征质量,然后通过聚合这些特征形成一个紧凑的描述符来搜索图像。我们在基准数据集和泰国古代文物的大量公共收藏上测试了我们提出的方法。实验结果表明,该方法的平均准确率达到77.9%,优于现有的基于cnn的视觉描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信