Syzygies of ideals of polynomial rings over principal ideal domains

H. Charalambous, K. Karagiannis, Sotiris Karanikolopoulos, A. Kontogeorgis
{"title":"Syzygies of ideals of polynomial rings over principal ideal domains","authors":"H. Charalambous, K. Karagiannis, Sotiris Karanikolopoulos, A. Kontogeorgis","doi":"10.1145/3373207.3404046","DOIUrl":null,"url":null,"abstract":"We study computational aspects of syzygies of graded modules over polynomial rings R[w1, ..., wg] when the base R is a discrete valuation ring. In particular, we use the torsion of their syzygies over R to provide a formula which describes the behavior of the Betti numbers when changing the base to the residue field or the fraction field of R. Our work is motivated by the deformation theory of curves.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3404046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study computational aspects of syzygies of graded modules over polynomial rings R[w1, ..., wg] when the base R is a discrete valuation ring. In particular, we use the torsion of their syzygies over R to provide a formula which describes the behavior of the Betti numbers when changing the base to the residue field or the fraction field of R. Our work is motivated by the deformation theory of curves.
主理想域上多项式环理想的合性
我们研究了多项式环R[w1,…]上的梯度模的协同的计算方面。,当基R是一个离散赋值环时。特别地,我们利用它们在R上的合子的扭转提供了一个公式,该公式描述了将基改为R的剩余场或分数场时Betti数的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信