Inversion-based hardware gaussian random number generator: A case study of function evaluation via hierarchical segmentation

Dong-U Lee, R. Cheung, J. Villasenor, W. Luk
{"title":"Inversion-based hardware gaussian random number generator: A case study of function evaluation via hierarchical segmentation","authors":"Dong-U Lee, R. Cheung, J. Villasenor, W. Luk","doi":"10.1109/FPT.2006.270388","DOIUrl":null,"url":null,"abstract":"We present the design and implementation of a Gaussian random number generator (GRNG) via hierarchical segmentation. Gaussian samples are generated using the inversion method, which involves the evaluation of the inverse Gaussian cumulative distribution function (IGCDF). The IGCDF is highly nonlinear and is evaluated via piecewise polynomial approximations (splines) with a hierarchical segmentation scheme that involves uniform splines and splines with size varying by powers of two. This segmentation approach adapts the spline sizes according to the non-linearity of the function, allowing efficient evaluation of the IGCDF. Bit-widths of the fixed-point polynomial coefficients and arithmetic operators are optimized in an analytical manner to guarantee a precision accurate to one unit in the last place. Our architecture generates 16-bit Gaussian samples accurate to 8.2cr (standard deviations). A pipelined implementation on a Xilinx Virtex-4 XC4LX100-12 FPGA yields 371 MHz and occupies 543 slices, 2 block RAMs, and 2 DSP slices, generating one sample every clock cycle","PeriodicalId":354940,"journal":{"name":"2006 IEEE International Conference on Field Programmable Technology","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Field Programmable Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2006.270388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We present the design and implementation of a Gaussian random number generator (GRNG) via hierarchical segmentation. Gaussian samples are generated using the inversion method, which involves the evaluation of the inverse Gaussian cumulative distribution function (IGCDF). The IGCDF is highly nonlinear and is evaluated via piecewise polynomial approximations (splines) with a hierarchical segmentation scheme that involves uniform splines and splines with size varying by powers of two. This segmentation approach adapts the spline sizes according to the non-linearity of the function, allowing efficient evaluation of the IGCDF. Bit-widths of the fixed-point polynomial coefficients and arithmetic operators are optimized in an analytical manner to guarantee a precision accurate to one unit in the last place. Our architecture generates 16-bit Gaussian samples accurate to 8.2cr (standard deviations). A pipelined implementation on a Xilinx Virtex-4 XC4LX100-12 FPGA yields 371 MHz and occupies 543 slices, 2 block RAMs, and 2 DSP slices, generating one sample every clock cycle
基于反转的硬件高斯随机数生成器:基于分层分割的函数求值案例研究
提出了一种基于分层分割的高斯随机数生成器(GRNG)的设计与实现。利用反演方法生成高斯样本,该方法涉及对逆高斯累积分布函数(IGCDF)的求值。IGCDF是高度非线性的,通过分段多项式近似(样条)进行评估,并采用分层分割方案,包括均匀样条和大小变化为2次幂的样条。这种分割方法根据函数的非线性调整样条的大小,允许对IGCDF进行有效的评估。定点多项式系数和算术运算符的位宽以解析的方式优化,保证精度精确到最后一个单位。我们的架构生成精确到8.2cr(标准差)的16位高斯样本。在Xilinx Virtex-4 XC4LX100-12 FPGA上的流水线实现产生371 MHz,占用543片,2块ram和2个DSP片,每个时钟周期生成一个采样
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信