{"title":"Spatial Variations in Achilles Tendon Shear Wave Speed Using a Cost-Effective Method of Accelerometers","authors":"Muhammad Salman, Conghui Ge, Clint Morris","doi":"10.1115/imece2019-11001","DOIUrl":null,"url":null,"abstract":"\n Currently there are no cost-effective ways to quantitatively measure the in-vivo mechanical properties of the Achilles tendon. Stiffness can be used as a measure of tone and mechanical integrity of both muscles and tendons. Stiffness of the Achilles tendon (AT) can be quantified by the speed of shear wave propagation. The speed of propagation can then be used to find the instantaneous shear modulus. Currently there are other methods such as Ultrasound (US) imaging and Magnetic Resonance Imaging (MRI) which are used clinically to determine the variations in stiffness of the AT. However, these methods require complex signal processing and experienced technicians. Moreover, US imaging technique is limited in measuring high shear wave speed values which are greater than 17 m/s. In this research, one-dimensional accelerometers were used to measure acceleration through the AT. Then a cross-correlation signal processing technique was used to convert acceleration to the velocity of shear wave propagation across the AT. This method could potentially evaluate the mechanical properties of both normal and damaged tendons. This process has proven to be a cost-effective and simple way to assess the stiffness of the AT. The modulus of elasticity (E) was found using the following relation: E = 3ρV2.","PeriodicalId":332737,"journal":{"name":"Volume 3: Biomedical and Biotechnology Engineering","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Biomedical and Biotechnology Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Currently there are no cost-effective ways to quantitatively measure the in-vivo mechanical properties of the Achilles tendon. Stiffness can be used as a measure of tone and mechanical integrity of both muscles and tendons. Stiffness of the Achilles tendon (AT) can be quantified by the speed of shear wave propagation. The speed of propagation can then be used to find the instantaneous shear modulus. Currently there are other methods such as Ultrasound (US) imaging and Magnetic Resonance Imaging (MRI) which are used clinically to determine the variations in stiffness of the AT. However, these methods require complex signal processing and experienced technicians. Moreover, US imaging technique is limited in measuring high shear wave speed values which are greater than 17 m/s. In this research, one-dimensional accelerometers were used to measure acceleration through the AT. Then a cross-correlation signal processing technique was used to convert acceleration to the velocity of shear wave propagation across the AT. This method could potentially evaluate the mechanical properties of both normal and damaged tendons. This process has proven to be a cost-effective and simple way to assess the stiffness of the AT. The modulus of elasticity (E) was found using the following relation: E = 3ρV2.