S. Mittal, S. Kurude, S. Dutta, P. Debashis, S. Ganguly, S. Lodha, A. Laha, U. Ganguly
{"title":"Epitaxial rare earth oxide (EOx) FinFET: A variability-resistant Ge FinFET architecture with multi VT","authors":"S. Mittal, S. Kurude, S. Dutta, P. Debashis, S. Ganguly, S. Lodha, A. Laha, U. Ganguly","doi":"10.1109/DRC.2014.6872315","DOIUrl":null,"url":null,"abstract":"Band to band tunneling (BTBT) is a major challenge in Ge FinFETs due to its smaller band gap. Reduction in BTBT by quantum-confinement (QC) based increase in band-gap requires narrow Wfin. However, Line Edge Roughness (LER) on narrow fins causes large VT variability. Improved fin-width process e.g. SADP [1], ALE [2] have been proposed to reduce LER. Alternatively, variability resistant transistor design has been recently proposed with thin Ge on Si highly retrograde doped fins by our group [3], which also provides multiple VT capability - a major challenge in FinFETs. However, this has 2 challenges - (i) thickness limitation of <; 2nm of defect-free Ge on Si and (ii) RDF in the retrograde doped fins. In this study, we propose a dual-gate structure like FinFET by epitaxially growing undoped Ge /rare earth oxide (e.g. Gd2O3) [4] stack on highly doped Si fins. By statistical simulations, we show that this structure can reduce LER based variability by more than 90% in comparison to FinFETs at a similar performance. RDF is negligible due to the undoped Ge channel. Thicker (>2nm) defect-free Ge can be grown epitaxially on Gd2O3 [4]. We show the multi-VT capability enabled by independent back-gate biasing, and hence provides a significant advantage over FinFETs. Experimental data from MOSCAP with epi Gd2O3 as gate dielectric (~ 4.5 nm) show lower leakage currents than LSTP specification.","PeriodicalId":293780,"journal":{"name":"72nd Device Research Conference","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"72nd Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2014.6872315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Band to band tunneling (BTBT) is a major challenge in Ge FinFETs due to its smaller band gap. Reduction in BTBT by quantum-confinement (QC) based increase in band-gap requires narrow Wfin. However, Line Edge Roughness (LER) on narrow fins causes large VT variability. Improved fin-width process e.g. SADP [1], ALE [2] have been proposed to reduce LER. Alternatively, variability resistant transistor design has been recently proposed with thin Ge on Si highly retrograde doped fins by our group [3], which also provides multiple VT capability - a major challenge in FinFETs. However, this has 2 challenges - (i) thickness limitation of <; 2nm of defect-free Ge on Si and (ii) RDF in the retrograde doped fins. In this study, we propose a dual-gate structure like FinFET by epitaxially growing undoped Ge /rare earth oxide (e.g. Gd2O3) [4] stack on highly doped Si fins. By statistical simulations, we show that this structure can reduce LER based variability by more than 90% in comparison to FinFETs at a similar performance. RDF is negligible due to the undoped Ge channel. Thicker (>2nm) defect-free Ge can be grown epitaxially on Gd2O3 [4]. We show the multi-VT capability enabled by independent back-gate biasing, and hence provides a significant advantage over FinFETs. Experimental data from MOSCAP with epi Gd2O3 as gate dielectric (~ 4.5 nm) show lower leakage currents than LSTP specification.