Improved Whale Optimization Algorithm for Optimal Network Coverage in Industrial Wireless Sensor Networks

P. Devan, R. Ibrahim, M. Omar, Kishore Bingi, H. Abdulrab, F. Hussin
{"title":"Improved Whale Optimization Algorithm for Optimal Network Coverage in Industrial Wireless Sensor Networks","authors":"P. Devan, R. Ibrahim, M. Omar, Kishore Bingi, H. Abdulrab, F. Hussin","doi":"10.1109/ICFTSC57269.2022.10040067","DOIUrl":null,"url":null,"abstract":"This paper aims to develop an improved whale optimization algorithm (IWOA) using naturally occurring spiral characteristics for optimal router placement in the industrial wireless sensor networks (IWSN) with adequate network connectivity and coverage for all the available clients in its network. The proposed algorithm uses the widely known Archimedean spiral characteristics for the humpback whale’s bubble-net hunting behaviour. The proposed algorithm is compared with the existing whale optimization algorithm (WOA) over multiple optimization benchmark test functions using various spiral patterns. Furthermore, the algorithm is additionally validated for the IWSN problem to obtain the optimal locations for placing the routers in the network to provide maximum connectivity and client coverage for all the available clients with possible minimization of the area overlapping. The numerical and convergence results show that using sin and cos based spiral behaviours improved the convergence rate by 42.866% and 100% in benchmark test functions and IWSN problem, respectively.","PeriodicalId":386462,"journal":{"name":"2022 International Conference on Future Trends in Smart Communities (ICFTSC)","volume":"80 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Future Trends in Smart Communities (ICFTSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFTSC57269.2022.10040067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper aims to develop an improved whale optimization algorithm (IWOA) using naturally occurring spiral characteristics for optimal router placement in the industrial wireless sensor networks (IWSN) with adequate network connectivity and coverage for all the available clients in its network. The proposed algorithm uses the widely known Archimedean spiral characteristics for the humpback whale’s bubble-net hunting behaviour. The proposed algorithm is compared with the existing whale optimization algorithm (WOA) over multiple optimization benchmark test functions using various spiral patterns. Furthermore, the algorithm is additionally validated for the IWSN problem to obtain the optimal locations for placing the routers in the network to provide maximum connectivity and client coverage for all the available clients with possible minimization of the area overlapping. The numerical and convergence results show that using sin and cos based spiral behaviours improved the convergence rate by 42.866% and 100% in benchmark test functions and IWSN problem, respectively.
工业无线传感器网络最优网络覆盖的改进Whale优化算法
本文旨在开发一种改进的鲸鱼优化算法(IWOA),该算法利用自然发生的螺旋特性,在工业无线传感器网络(IWSN)中实现最佳路由器布局,并为其网络中的所有可用客户端提供足够的网络连接和覆盖。提出的算法使用广为人知的阿基米德螺旋特征来描述座头鲸的泡泡网捕猎行为。通过使用不同螺旋模式的多个优化基准测试函数,将该算法与现有的鲸鱼优化算法(WOA)进行了比较。此外,该算法还针对IWSN问题进行了验证,以获得在网络中放置路由器的最佳位置,从而在尽可能减少区域重叠的情况下为所有可用客户端提供最大的连通性和客户端覆盖。数值和收敛结果表明,在基准测试函数和IWSN问题上,采用基于sin和cos的螺旋行为将收敛率分别提高了42.866%和100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信