Dynamic hierarchical Bayesian network for Arabic handwritten word recognition

K. Jayech, Nesrine Trimech, M. Mahjoub, N. Amara
{"title":"Dynamic hierarchical Bayesian network for Arabic handwritten word recognition","authors":"K. Jayech, Nesrine Trimech, M. Mahjoub, N. Amara","doi":"10.1109/ICTA.2013.6815309","DOIUrl":null,"url":null,"abstract":"This paper presents a new probabilistic graphical model used to model and recognize words representing the names of Tunisian cities. In fact, this work is based on a dynamic hierarchical Bayesian network. The aim is to find the best model of Arabic handwriting to reduce the complexity of the recognition process by permitting the partial recognition. Actually, we propose a segmentation of the word based on smoothing the vertical histogram projection using different width values to reduce the error of segmentation. Then, we extract the characteristics of each cell using the Zernike and HU moments, which are invariant to rotation, translation and scaling. Our approach is tested using the IFN / ENIT database, and the experiment results are very promising.","PeriodicalId":188977,"journal":{"name":"Fourth International Conference on Information and Communication Technology and Accessibility (ICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Information and Communication Technology and Accessibility (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA.2013.6815309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents a new probabilistic graphical model used to model and recognize words representing the names of Tunisian cities. In fact, this work is based on a dynamic hierarchical Bayesian network. The aim is to find the best model of Arabic handwriting to reduce the complexity of the recognition process by permitting the partial recognition. Actually, we propose a segmentation of the word based on smoothing the vertical histogram projection using different width values to reduce the error of segmentation. Then, we extract the characteristics of each cell using the Zernike and HU moments, which are invariant to rotation, translation and scaling. Our approach is tested using the IFN / ENIT database, and the experiment results are very promising.
基于动态层次贝叶斯网络的阿拉伯文手写词识别
本文提出了一种新的概率图形模型,用于建模和识别代表突尼斯城市名称的单词。事实上,这项工作是基于一个动态分层贝叶斯网络。目的是找到最好的阿拉伯笔迹模型,通过允许部分识别来减少识别过程的复杂性。实际上,我们提出了一种基于平滑垂直直方图投影的词分割方法,使用不同的宽度值来减少分割的误差。然后,我们利用Zernike矩和HU矩提取每个细胞的特征,这两个矩对旋转、平移和缩放是不变的。我们的方法使用IFN / ENIT数据库进行了测试,实验结果非常有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信