L. Ciabattoni, Gionata Cimini, M. Grisostomi, G. Ippoliti, S. Longhi, Emanuele Mainardi
{"title":"Supervisory control of PV-battery systems by online tuned neural networks","authors":"L. Ciabattoni, Gionata Cimini, M. Grisostomi, G. Ippoliti, S. Longhi, Emanuele Mainardi","doi":"10.1109/ICMECH.2013.6518518","DOIUrl":null,"url":null,"abstract":"The paper deals with a neural network based supervisor control system for a PhotoVoltaic (PV) plant. The aim of the work is to feed the power line with the 24 hours ahead forecast of the PV production. An on-line self-learning prediction algorithm is used to forecast the power production of the PV plant. The learning algorithm is based on a Radial Basis Function (RBF) network and combines the growing criterion and the pruning strategy of the minimal resource allocating network technique. The power feeding the electric line is scheduled by a Fuzzy Logic Supervisor (FLS) which controls the charge and discharge of a battery used as an energy buffer. The proposed solution has been experimentally tested on a 14 KWp PV plant and a lithium battery pack.","PeriodicalId":448152,"journal":{"name":"2013 IEEE International Conference on Mechatronics (ICM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2013.6518518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
The paper deals with a neural network based supervisor control system for a PhotoVoltaic (PV) plant. The aim of the work is to feed the power line with the 24 hours ahead forecast of the PV production. An on-line self-learning prediction algorithm is used to forecast the power production of the PV plant. The learning algorithm is based on a Radial Basis Function (RBF) network and combines the growing criterion and the pruning strategy of the minimal resource allocating network technique. The power feeding the electric line is scheduled by a Fuzzy Logic Supervisor (FLS) which controls the charge and discharge of a battery used as an energy buffer. The proposed solution has been experimentally tested on a 14 KWp PV plant and a lithium battery pack.