{"title":"Activin A activation drives renal fibrosis through the STAT3 signaling pathway.","authors":"C. Yuan, Lihua Ni, Xiaoyan Wu","doi":"10.21203/rs.3.rs-90776/v1","DOIUrl":null,"url":null,"abstract":"The present study investigated whether TGF-β1 promotes fibrotic changes in HK-2 cells through the Activin A and STAT3 signaling pathways in vitro. Bioinformatics analysis of microarray profiles (GSE20247 and GSE23338) and a protein-protein interaction (PPI) analysis were performed to select hub genes. For the in vitro study, HK-2 cells were exposed to TGF-β1. The expression of Activin A and STAT3 was assayed, and the effect of Activin A and STAT3 expression on fibrosis was assessed (Collagen I and Fibronectin). The bioinformatics study revealed TGF-β1 and Activin A as hub genes. The in vitro study showed that Activin A expression was significantly increased after TGF-β1 incubation. Blocking Activin A attenuated TGF-β1-induced fibrosis. In addition, Activin A blockade attenuated TGF-β1-induced STAT3 signaling pathway activation and related fibrosis. More importantly, STAT3 inhibition by S3I-201 alleviated TGF-β1-induced fibrosis. Activin A promoted cellular fibrotic changes through the STAT3 signaling pathway. Attenuating Activin A expression to mediate the STAT3 signaling pathway might be a strategy for potent renal fibrosis treatment.","PeriodicalId":121221,"journal":{"name":"The international journal of biochemistry & cell biology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of biochemistry & cell biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-90776/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The present study investigated whether TGF-β1 promotes fibrotic changes in HK-2 cells through the Activin A and STAT3 signaling pathways in vitro. Bioinformatics analysis of microarray profiles (GSE20247 and GSE23338) and a protein-protein interaction (PPI) analysis were performed to select hub genes. For the in vitro study, HK-2 cells were exposed to TGF-β1. The expression of Activin A and STAT3 was assayed, and the effect of Activin A and STAT3 expression on fibrosis was assessed (Collagen I and Fibronectin). The bioinformatics study revealed TGF-β1 and Activin A as hub genes. The in vitro study showed that Activin A expression was significantly increased after TGF-β1 incubation. Blocking Activin A attenuated TGF-β1-induced fibrosis. In addition, Activin A blockade attenuated TGF-β1-induced STAT3 signaling pathway activation and related fibrosis. More importantly, STAT3 inhibition by S3I-201 alleviated TGF-β1-induced fibrosis. Activin A promoted cellular fibrotic changes through the STAT3 signaling pathway. Attenuating Activin A expression to mediate the STAT3 signaling pathway might be a strategy for potent renal fibrosis treatment.