{"title":"A CMOS high-voltage DC-DC up converter dedicated for ultrasonic applications","authors":"R. Chebli, M. Sawan","doi":"10.1109/IWSOC.2004.1319862","DOIUrl":null,"url":null,"abstract":"This paper concerns the design and implementation of a fully integrated high voltage CMOS DC-DC up converter (VHVUC) dedicated to ultrasonic transmitters. This VHVUC new topology, followed by a drive amplifier, is based on a multiple-stage charge pump circuit and a level-up shifter is used in each stage as a clock generator in order to increase exponentially the DC voltage. A drive amplifier, based on a level-up stage and a class D switching output stage. It is used to excite the ultrasonic transducer, resonate at 3.5 MHz. Simulation results of the proposed converter, using a 0.8/spl mu/m CMOS/DMOS High-Voltage process technology, show output voltage of 200 V with 83% gain voltage factor and a 95 mV output ripples for 2 MHz frequency. Also, the drive amplifier for single shock excitation show a 140 V spike at the transducer element with a pulse repetition time of 260 /spl mu/s and a rise and fall times of 220 ns and 713 ns respectively with a peak current through the transducer element of 25 mA. These results show the feasibility of applying HV process technology to replace conventional electronic transmitter technology.","PeriodicalId":306688,"journal":{"name":"4th IEEE International Workshop on System-on-Chip for Real-Time Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE International Workshop on System-on-Chip for Real-Time Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSOC.2004.1319862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper concerns the design and implementation of a fully integrated high voltage CMOS DC-DC up converter (VHVUC) dedicated to ultrasonic transmitters. This VHVUC new topology, followed by a drive amplifier, is based on a multiple-stage charge pump circuit and a level-up shifter is used in each stage as a clock generator in order to increase exponentially the DC voltage. A drive amplifier, based on a level-up stage and a class D switching output stage. It is used to excite the ultrasonic transducer, resonate at 3.5 MHz. Simulation results of the proposed converter, using a 0.8/spl mu/m CMOS/DMOS High-Voltage process technology, show output voltage of 200 V with 83% gain voltage factor and a 95 mV output ripples for 2 MHz frequency. Also, the drive amplifier for single shock excitation show a 140 V spike at the transducer element with a pulse repetition time of 260 /spl mu/s and a rise and fall times of 220 ns and 713 ns respectively with a peak current through the transducer element of 25 mA. These results show the feasibility of applying HV process technology to replace conventional electronic transmitter technology.