Optimizing the Fast Fourier Transform Using Mixed Precision on Tensor Core Hardware

Anumeena Sorna, Xiao-he Cheng, E. D'Azevedo, Kwai Wong, S. Tomov
{"title":"Optimizing the Fast Fourier Transform Using Mixed Precision on Tensor Core Hardware","authors":"Anumeena Sorna, Xiao-he Cheng, E. D'Azevedo, Kwai Wong, S. Tomov","doi":"10.1109/HIPCW.2018.8634417","DOIUrl":null,"url":null,"abstract":"The Fast Fourier Transform is a fundamental tool in scientific and technical computation. The highly parallelizable nature of the algorithm makes it a suitable candidate for GPU acceleration. This paper focuses on exploiting the speedup due to using the half precision multiplication capability of the latest GPUs' tensor core hardware without significantly degrading the precision of the Fourier Transform result. We develop an algorithm that dynamically splits the input single precision dataset into two half precision sets at the lowest level, uses half precision multiplication, and recombines the result at a later step. This work paves the way for using tensor cores for high precision inputs.","PeriodicalId":401060,"journal":{"name":"2018 IEEE 25th International Conference on High Performance Computing Workshops (HiPCW)","volume":"67 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on High Performance Computing Workshops (HiPCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIPCW.2018.8634417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

The Fast Fourier Transform is a fundamental tool in scientific and technical computation. The highly parallelizable nature of the algorithm makes it a suitable candidate for GPU acceleration. This paper focuses on exploiting the speedup due to using the half precision multiplication capability of the latest GPUs' tensor core hardware without significantly degrading the precision of the Fourier Transform result. We develop an algorithm that dynamically splits the input single precision dataset into two half precision sets at the lowest level, uses half precision multiplication, and recombines the result at a later step. This work paves the way for using tensor cores for high precision inputs.
基于张量核心硬件的混合精度快速傅里叶变换优化
快速傅里叶变换是科学技术计算中的一个基本工具。该算法的高度并行性使其成为GPU加速的合适候选。本文的重点是在不显著降低傅里叶变换结果精度的前提下,利用最新gpu张量核心硬件的半精度乘法能力来实现加速。我们开发了一种算法,该算法在最低级别将输入的单精度数据集动态拆分为两个半精度集,使用半精度乘法,并在后面的步骤重新组合结果。这项工作为使用张量核进行高精度输入铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信