Detecting Inconsistencies in Public Bids: An Automated and Data-based Approach

Gabriel P. Oliveira, Arthur P. G. Reis, Felipe A. N. Freitas, Lucas L. Costa, Mariana O. Silva, P. Brum, Samuel E. L. Oliveira, Michele A. Brandão, A. Lacerda, G. Pappa
{"title":"Detecting Inconsistencies in Public Bids: An Automated and Data-based Approach","authors":"Gabriel P. Oliveira, Arthur P. G. Reis, Felipe A. N. Freitas, Lucas L. Costa, Mariana O. Silva, P. Brum, Samuel E. L. Oliveira, Michele A. Brandão, A. Lacerda, G. Pappa","doi":"10.1145/3539637.3558230","DOIUrl":null,"url":null,"abstract":"One application for using government data is the detection of irregularities that may indicate fraud in the public sector. This paper presents an approach that analyzes public bidding data available on the Web to detect bidder inconsistencies. Specifically, we propose a hierarchical decision approach from public bidding data, where each bidder is classified as Valid, Doubtful, or Invalid, based on the compatibility between the bidding items and the divisions of the CNAE codes (National Classification of Economic activities). The results reveal that combining commonly available data on bidders and extracting the description of bid items can help in fraud detection. Furthermore, the proposed approach can reduce the number of bids a specialist must analyze to detect fraud, making it easier to identify inconsistencies.","PeriodicalId":350776,"journal":{"name":"Proceedings of the Brazilian Symposium on Multimedia and the Web","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Brazilian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539637.3558230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

One application for using government data is the detection of irregularities that may indicate fraud in the public sector. This paper presents an approach that analyzes public bidding data available on the Web to detect bidder inconsistencies. Specifically, we propose a hierarchical decision approach from public bidding data, where each bidder is classified as Valid, Doubtful, or Invalid, based on the compatibility between the bidding items and the divisions of the CNAE codes (National Classification of Economic activities). The results reveal that combining commonly available data on bidders and extracting the description of bid items can help in fraud detection. Furthermore, the proposed approach can reduce the number of bids a specialist must analyze to detect fraud, making it easier to identify inconsistencies.
在公开投标中发现不一致:一种自动化和基于数据的方法
使用政府数据的一个应用是检测可能表明公共部门存在欺诈行为的违规行为。本文提出了一种分析网上公开投标数据的方法,以发现投标人的不一致。具体而言,我们提出了一种基于公开招标数据的分层决策方法,根据招标项目与CNAE代码(国家经济活动分类)划分的兼容性,将每个投标人分为有效、可疑或无效。结果表明,结合常见的投标人数据并提取投标项目描述有助于欺诈检测。此外,所提出的方法可以减少专家为检测欺诈而必须分析的投标数量,从而更容易识别不一致之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信