{"title":"Fuzzy logic-based self-tuning autopilots for trajectory tracking of a low-cost quadcopter: A comparative study","authors":"Fendy Santoso, M. Garratt, S. Anavatti","doi":"10.1109/ICAMIMIA.2015.7508004","DOIUrl":null,"url":null,"abstract":"In this work, we develop self-tuning PD-fuzzy autopilots for trajectory tracking of a low-cost Parrot AR.Drone2 quadcopter. We first recall the mathematical model of the system in terms of its multi-input, multi-output (MIMO) transfer function model acquired via system identification technique. Accordingly, we design three self-tuning autopilots by means of fuzzy inference systems to control the position of the drone in 3D space. This research serves as a preliminary study in our design process to investigate the feasibility of our fuzzy self-tuning autopilot before we can implement it into practice. We perform a systematic comparative study to highlight the effectiveness of our control algorithm with respect to fixed-gain autopilot as well as fuzzy logic controller.","PeriodicalId":162848,"journal":{"name":"2015 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAMIMIA.2015.7508004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
In this work, we develop self-tuning PD-fuzzy autopilots for trajectory tracking of a low-cost Parrot AR.Drone2 quadcopter. We first recall the mathematical model of the system in terms of its multi-input, multi-output (MIMO) transfer function model acquired via system identification technique. Accordingly, we design three self-tuning autopilots by means of fuzzy inference systems to control the position of the drone in 3D space. This research serves as a preliminary study in our design process to investigate the feasibility of our fuzzy self-tuning autopilot before we can implement it into practice. We perform a systematic comparative study to highlight the effectiveness of our control algorithm with respect to fixed-gain autopilot as well as fuzzy logic controller.