Fuzzy logic-based self-tuning autopilots for trajectory tracking of a low-cost quadcopter: A comparative study

Fendy Santoso, M. Garratt, S. Anavatti
{"title":"Fuzzy logic-based self-tuning autopilots for trajectory tracking of a low-cost quadcopter: A comparative study","authors":"Fendy Santoso, M. Garratt, S. Anavatti","doi":"10.1109/ICAMIMIA.2015.7508004","DOIUrl":null,"url":null,"abstract":"In this work, we develop self-tuning PD-fuzzy autopilots for trajectory tracking of a low-cost Parrot AR.Drone2 quadcopter. We first recall the mathematical model of the system in terms of its multi-input, multi-output (MIMO) transfer function model acquired via system identification technique. Accordingly, we design three self-tuning autopilots by means of fuzzy inference systems to control the position of the drone in 3D space. This research serves as a preliminary study in our design process to investigate the feasibility of our fuzzy self-tuning autopilot before we can implement it into practice. We perform a systematic comparative study to highlight the effectiveness of our control algorithm with respect to fixed-gain autopilot as well as fuzzy logic controller.","PeriodicalId":162848,"journal":{"name":"2015 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAMIMIA.2015.7508004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this work, we develop self-tuning PD-fuzzy autopilots for trajectory tracking of a low-cost Parrot AR.Drone2 quadcopter. We first recall the mathematical model of the system in terms of its multi-input, multi-output (MIMO) transfer function model acquired via system identification technique. Accordingly, we design three self-tuning autopilots by means of fuzzy inference systems to control the position of the drone in 3D space. This research serves as a preliminary study in our design process to investigate the feasibility of our fuzzy self-tuning autopilot before we can implement it into practice. We perform a systematic comparative study to highlight the effectiveness of our control algorithm with respect to fixed-gain autopilot as well as fuzzy logic controller.
基于模糊逻辑的低成本四轴飞行器轨迹跟踪自调谐自动驾驶仪的比较研究
在这项工作中,我们开发了用于低成本Parrot AR.Drone2四轴飞行器轨迹跟踪的自调谐pd -模糊自动驾驶仪。我们首先根据系统辨识技术获得的多输入多输出(MIMO)传递函数模型回顾系统的数学模型。因此,我们利用模糊推理系统设计了三种自调谐自动驾驶仪来控制无人机在三维空间中的位置。本研究作为我们设计过程中的一个初步研究,在我们将模糊自调谐自动驾驶仪付诸实践之前,对其可行性进行研究。我们进行了系统的比较研究,以突出我们的控制算法相对于固定增益自动驾驶仪和模糊逻辑控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信