Sadewa satellite remote sensing data to Manggarai 1-hour water level machine learning model

Jonathan Raditya Valerian, F. Rohmat, H. Kardhana, M. Kusuma, M. Yatsrib
{"title":"Sadewa satellite remote sensing data to Manggarai 1-hour water level machine learning model","authors":"Jonathan Raditya Valerian, F. Rohmat, H. Kardhana, M. Kusuma, M. Yatsrib","doi":"10.1109/ICAICTA53211.2021.9640254","DOIUrl":null,"url":null,"abstract":"The Manggarai Water Gate is a measurement point strategically located to measure Jakarta's flooding magnitude that keeps increasing from year to year. The 2015s gate capacity improvement underscores this importance. This paper applies a machine learning model that utilizes an atmospheric approach to predict the Manggarai water level as output. In the process, optimization is done by comparing three spatial input sizes and performing a sensitivity analysis of the input variables. Using a simple recurrent sequence, the model can predict the water level with a coefficient of determination (${R}^{2}$) reaching 0.7 using 18-hour recurrent data. This study can be used as the basis for further development that can take satellite data lead time advantage that is crucial for the early warning system.","PeriodicalId":217463,"journal":{"name":"2021 8th International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICTA53211.2021.9640254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Manggarai Water Gate is a measurement point strategically located to measure Jakarta's flooding magnitude that keeps increasing from year to year. The 2015s gate capacity improvement underscores this importance. This paper applies a machine learning model that utilizes an atmospheric approach to predict the Manggarai water level as output. In the process, optimization is done by comparing three spatial input sizes and performing a sensitivity analysis of the input variables. Using a simple recurrent sequence, the model can predict the water level with a coefficient of determination (${R}^{2}$) reaching 0.7 using 18-hour recurrent data. This study can be used as the basis for further development that can take satellite data lead time advantage that is crucial for the early warning system.
Sadewa卫星遥感数据以Manggarai 1小时水位机器学习模型
Manggarai水门是一个测量点,位于战略位置,用于测量雅加达每年不断增加的洪水强度。2015年登机口运力的提升凸显了这一点的重要性。本文采用一种机器学习模型,利用大气方法预测Manggarai水位作为输出。在此过程中,通过比较三种空间输入大小并对输入变量进行灵敏度分析来进行优化。利用一个简单的循环序列,利用18小时的循环数据,该模型可以预测水位,其决定系数(${R}^{2}$)达到0.7。这项研究可以作为进一步开发的基础,利用卫星数据的前置时间优势,这对预警系统至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信