Unsupervised Learning Minimum Risk Pattern Classification for Dependent Hypotheses and Dependent Measurements

C. Hilborn, D. Lainiotis
{"title":"Unsupervised Learning Minimum Risk Pattern Classification for Dependent Hypotheses and Dependent Measurements","authors":"C. Hilborn, D. Lainiotis","doi":"10.1109/TSSC.1969.300201","DOIUrl":null,"url":null,"abstract":"A recursive Bayes optimal solution is found for the problem of sequential multicategory pattern recognition when unsupervised learning is required. An unknown parameter model is developed which, for the pattern classification problem, allows for 1) both constant and time-varying unknown parameters, 2) partially unknown probability laws of the hypotheses and time-varying parameter sequences, 3) dependence of the observations on past as well as present hypotheses and parameters, and most significantly, 4) sequential dependencies in the observations arising from either (or both) dependency in the pattern or information source (context dependence) or in the observation medium (sequential measurement correlation), these dependencies being up to any finite Markov orders. For finite parameter spaces, the solution which is Bayes optimal (minimum risk) at each step is found and shown to be realizable in recursive form with fixed memory requirements. The asymptotic properties of the optimal solution are studied and conditions established for the solution (in addition to making best use of available data at each step) to converge in performance to operation with knowledge of the (unobservable) constant unknown parameters.","PeriodicalId":120916,"journal":{"name":"IEEE Trans. Syst. Sci. Cybern.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1969-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Syst. Sci. Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSC.1969.300201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

A recursive Bayes optimal solution is found for the problem of sequential multicategory pattern recognition when unsupervised learning is required. An unknown parameter model is developed which, for the pattern classification problem, allows for 1) both constant and time-varying unknown parameters, 2) partially unknown probability laws of the hypotheses and time-varying parameter sequences, 3) dependence of the observations on past as well as present hypotheses and parameters, and most significantly, 4) sequential dependencies in the observations arising from either (or both) dependency in the pattern or information source (context dependence) or in the observation medium (sequential measurement correlation), these dependencies being up to any finite Markov orders. For finite parameter spaces, the solution which is Bayes optimal (minimum risk) at each step is found and shown to be realizable in recursive form with fixed memory requirements. The asymptotic properties of the optimal solution are studied and conditions established for the solution (in addition to making best use of available data at each step) to converge in performance to operation with knowledge of the (unobservable) constant unknown parameters.
非监督学习最小风险模式分类的相关假设和相关测量
针对需要无监督学习的顺序多类别模式识别问题,提出了一种递归贝叶斯最优解。对于模式分类问题,开发了一个未知参数模型,该模型允许1)不变和时变的未知参数,2)部分未知的假设和时变参数序列的概率规律,3)对过去和现在的假设和参数的观测依赖,最重要的是,4)由模式或信息源(上下文依赖)或观察介质(顺序测量相关)中的依赖关系(或两者)引起的观察中的顺序依赖关系,这些依赖关系可达任何有限马尔可夫阶。对于有限参数空间,找到了每一步贝叶斯最优(最小风险)的解,并证明了在固定内存需求的递归形式下是可实现的。研究了最优解的渐近性质,并建立了解决方案的条件(除了在每一步充分利用可用数据外),以便在知道(不可观测的)常数未知参数的情况下,在性能上收敛到操作上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信