Estimation of Leakage Distribution Utilizing Gaussian Mixture Model

Hyun-jeong Kwon, Young Hwan Kim, Seokhyeong Kang
{"title":"Estimation of Leakage Distribution Utilizing Gaussian Mixture Model","authors":"Hyun-jeong Kwon, Young Hwan Kim, Seokhyeong Kang","doi":"10.1109/ISOCC.2018.8649978","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method which utilizes the Gaussian Mixture Model (GMM) to estimate the leakage distribution of a circuit. Our proposed method assumes that the leakage distribution can be represented using the GMM which can cover any continuous function. After the GMM clustering using the leakage simulation data, the leakage distribution of the input circuit can be obtained. The experimental results with the K-S test showed that the proposed method exhibited 1.82e+05 times larger p-value and 7.74e-01 times smaller K-S statistics compared to the state-of-the-art benchmark method on average.","PeriodicalId":127156,"journal":{"name":"2018 International SoC Design Conference (ISOCC)","volume":"13 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2018.8649978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel method which utilizes the Gaussian Mixture Model (GMM) to estimate the leakage distribution of a circuit. Our proposed method assumes that the leakage distribution can be represented using the GMM which can cover any continuous function. After the GMM clustering using the leakage simulation data, the leakage distribution of the input circuit can be obtained. The experimental results with the K-S test showed that the proposed method exhibited 1.82e+05 times larger p-value and 7.74e-01 times smaller K-S statistics compared to the state-of-the-art benchmark method on average.
利用高斯混合模型估计泄漏分布
本文提出了一种利用高斯混合模型(GMM)估计电路泄漏分布的新方法。我们提出的方法假设泄漏分布可以用GMM表示,GMM可以覆盖任何连续函数。利用泄漏仿真数据进行GMM聚类后,可以得到输入电路的泄漏分布。K-S检验的实验结果表明,与最先进的基准方法相比,该方法的p值平均大1.82e+05倍,K-S统计量平均小7.74e-01倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信