Generative Adversarial Neural Network for Creating Photorealistic Images

Oleksandr Striuk, Y. Kondratenko, I. Sidenko, Alla Vorobyova
{"title":"Generative Adversarial Neural Network for Creating Photorealistic Images","authors":"Oleksandr Striuk, Y. Kondratenko, I. Sidenko, Alla Vorobyova","doi":"10.1109/ATIT50783.2020.9349326","DOIUrl":null,"url":null,"abstract":"This paper is focused on studying the Generative Adversarial Neural Network (GAN or GANN) as an implement for creating diverse functional samples, particularly photorealistic images (graphic, molecular, etc.). The paper considers available existing methods and approaches for designing and algorithmization the current class of networks, also the effectiveness of different types of formed architectures with various combinations using the example of handwritten digits creation as one of the photorealistic images. The paper examines an applied value of the generative adversarial neural network as an implementation of the complex paradigm of artificial intelligence. The results of the study demonstrate the efficiency of the GAN technology in designing samples of various types and categories of complexity","PeriodicalId":312916,"journal":{"name":"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATIT50783.2020.9349326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper is focused on studying the Generative Adversarial Neural Network (GAN or GANN) as an implement for creating diverse functional samples, particularly photorealistic images (graphic, molecular, etc.). The paper considers available existing methods and approaches for designing and algorithmization the current class of networks, also the effectiveness of different types of formed architectures with various combinations using the example of handwritten digits creation as one of the photorealistic images. The paper examines an applied value of the generative adversarial neural network as an implementation of the complex paradigm of artificial intelligence. The results of the study demonstrate the efficiency of the GAN technology in designing samples of various types and categories of complexity
生成对抗神经网络创建逼真的图像
本文的重点是研究生成对抗神经网络(GAN或GANN)作为创建各种功能样本的工具,特别是逼真的图像(图形,分子等)。本文考虑了现有的网络设计和算法的方法和途径,以及不同类型的结构与各种组合的有效性,并以手写体数字创建为例作为逼真图像之一。本文探讨了生成对抗神经网络作为人工智能复杂范式的实现的应用价值。研究结果证明了GAN技术在设计各种复杂类型和类别的样品方面的效率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信