Movement of Current Filaments and its Impact on Avalanche Robustness in Vertical GaN P-N diode Under UIS stress

B. Shankar, K. Zeng, B. Gunning, Rafael Perez Martinez, Chuanzhe Meng, J. Flicker, A. Binder, J. Dickerson, R. Kaplar, S. Chowdhury
{"title":"Movement of Current Filaments and its Impact on Avalanche Robustness in Vertical GaN P-N diode Under UIS stress","authors":"B. Shankar, K. Zeng, B. Gunning, Rafael Perez Martinez, Chuanzhe Meng, J. Flicker, A. Binder, J. Dickerson, R. Kaplar, S. Chowdhury","doi":"10.1109/DRC55272.2022.9855818","DOIUrl":null,"url":null,"abstract":"Power semiconductor devices encounter stressful switching conditions in power electronic circuits [1]. Therefore, avalanche capability in power devices is highly desired, and its study is extremely important for realizing robust devices. Fortunately, GaN P-N junction possess avalanche capability, making vertical GaN devices with intrinsic P-N junctions robust against breakdown [2]. Most recently, vertical GaN P-N diodes with avalanche breakdown voltage up to 6 kV were reported [3]. However, most of these studies were done under DC, and a very few have investigated the avalanche behavior under circuit-level stresses such as unclamped inductive switching (UIS) stress. We previously reported unform and robust avalanche in our in-house fabricated 1.3 kV vertical GaN-on-GaN P-N diodes [4]. In our present work we extend our study to report the observation and role of current filament (microplasma tube) formed during avalanche conditions using the 1.3 kV GaN-on-GaN vertical P-N diode under UIS stress. We infer that the robustness in avalanche increased due to the movements of current filaments relieving the thermal stress.","PeriodicalId":200504,"journal":{"name":"2022 Device Research Conference (DRC)","volume":"30 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC55272.2022.9855818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Power semiconductor devices encounter stressful switching conditions in power electronic circuits [1]. Therefore, avalanche capability in power devices is highly desired, and its study is extremely important for realizing robust devices. Fortunately, GaN P-N junction possess avalanche capability, making vertical GaN devices with intrinsic P-N junctions robust against breakdown [2]. Most recently, vertical GaN P-N diodes with avalanche breakdown voltage up to 6 kV were reported [3]. However, most of these studies were done under DC, and a very few have investigated the avalanche behavior under circuit-level stresses such as unclamped inductive switching (UIS) stress. We previously reported unform and robust avalanche in our in-house fabricated 1.3 kV vertical GaN-on-GaN P-N diodes [4]. In our present work we extend our study to report the observation and role of current filament (microplasma tube) formed during avalanche conditions using the 1.3 kV GaN-on-GaN vertical P-N diode under UIS stress. We infer that the robustness in avalanche increased due to the movements of current filaments relieving the thermal stress.
电流丝的运动及其对垂直GaN P-N二极管在美国应力下雪崩稳健性的影响
功率半导体器件在电力电子电路中遇到压力开关条件。因此,对功率器件的雪崩性能提出了很高的要求,对其进行研究对于实现器件的鲁棒性具有极其重要的意义。幸运的是,GaN P-N结具有雪崩能力,使得具有内在P-N结的垂直GaN器件具有抗击穿[2]的鲁棒性。最近,雪崩击穿电压高达6 kV的垂直GaN P-N二极管被报道。然而,这些研究大多是在直流下进行的,很少有研究在电路级应力(如非箝位电感开关(UIS)应力)下的雪崩行为。我们之前报道了在我们内部制造的1.3 kV垂直GaN-on-GaN P-N二极管[4]中均匀和坚固的雪崩。在我们目前的工作中,我们扩展了我们的研究,报告了在雪崩条件下使用1.3 kV GaN-on-GaN垂直P-N二极管在UIS应力下形成的电流灯丝(微等离子体管)的观察和作用。我们推断,雪崩中的鲁棒性增加是由于电流细丝的运动减轻了热应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信