Multiplication characteristics of Al0.4Ga0.07In0.53As avalanche photodiodes grown as digital alloys on InP substrates

Seunghyun Lee, S. Kodati, D. Fink, T. Ronningen, A. Jones, J. Campbell, M. Winslow, C. Grein, S. Krishna
{"title":"Multiplication characteristics of Al0.4Ga0.07In0.53As avalanche photodiodes grown as digital alloys on InP substrates","authors":"Seunghyun Lee, S. Kodati, D. Fink, T. Ronningen, A. Jones, J. Campbell, M. Winslow, C. Grein, S. Krishna","doi":"10.1109/DRC50226.2020.9135156","DOIUrl":null,"url":null,"abstract":"Avalanche photodiodes (APDs) are used in short- and mid-wave infrared applications such as optical communication, LIDAR and 3D imaging [1] due to their internal gain, which improves the signal to noise ratio (SNR). However, the multiplication gain ( M ) gives rise to excess noise, caused by the stochastic nature of impact ionization, which can significantly degrade the SNR of APDs. The excess noise is quantitatively measured by excess noise factor, F(M) that is expressed by McIntyre’s local field theory [1] , F(M) = kM + (1-k)[2-(1/M)] where k is the ratio of the impact ionization coefficients for electrons and holes. According to the equation above, the low excess noise factor in APDs can be attained by a low k value.","PeriodicalId":397182,"journal":{"name":"2020 Device Research Conference (DRC)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC50226.2020.9135156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Avalanche photodiodes (APDs) are used in short- and mid-wave infrared applications such as optical communication, LIDAR and 3D imaging [1] due to their internal gain, which improves the signal to noise ratio (SNR). However, the multiplication gain ( M ) gives rise to excess noise, caused by the stochastic nature of impact ionization, which can significantly degrade the SNR of APDs. The excess noise is quantitatively measured by excess noise factor, F(M) that is expressed by McIntyre’s local field theory [1] , F(M) = kM + (1-k)[2-(1/M)] where k is the ratio of the impact ionization coefficients for electrons and holes. According to the equation above, the low excess noise factor in APDs can be attained by a low k value.
在InP衬底上生长数字合金Al0.4Ga0.07In0.53As雪崩光电二极管的倍增特性
雪崩光电二极管(apd)由于其内部增益提高了信噪比(SNR),被用于光通信、激光雷达和3D成像等短波和中波红外应用[1]。然而,由于碰撞电离的随机性,倍增增益(M)会产生过量的噪声,从而显著降低apd的信噪比。过量噪声通过过量噪声因子F(M)定量测量,过量噪声因子F(M)由McIntyre局部场论[1]表示,F(M) = kM + (1-k)[2-(1/M)],其中k为电子与空穴碰撞电离系数之比。由上式可知,低k值可以使apd的多余噪声系数低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信