Fast and robust automated segmentation of EIT lung images using an anatomically constrained Kalman filter

A. Zifan, P. Liatsis
{"title":"Fast and robust automated segmentation of EIT lung images using an anatomically constrained Kalman filter","authors":"A. Zifan, P. Liatsis","doi":"10.1109/IST.2012.6295492","DOIUrl":null,"url":null,"abstract":"In this paper we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using Electrical Impedance Tomography (EIT). EIT is an emerging promising non-invasive imaging modality, which produces real-time poor-spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a non-linear ill-posed inverse problem, therefore the problem is usually linearized which produces impedance-change images rather than static impedance, and the images are highly blurry and fuzzy along the object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed by augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle.","PeriodicalId":213330,"journal":{"name":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","volume":"2005 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2012.6295492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using Electrical Impedance Tomography (EIT). EIT is an emerging promising non-invasive imaging modality, which produces real-time poor-spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a non-linear ill-posed inverse problem, therefore the problem is usually linearized which produces impedance-change images rather than static impedance, and the images are highly blurry and fuzzy along the object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed by augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle.
基于解剖约束卡尔曼滤波的EIT肺图像快速鲁棒自动分割
本文提出了一种利用电阻抗断层扫描(EIT)快速准确分割肺阻抗图像的新方法。EIT是一种新兴的有前途的非侵入性成像方式,它可以产生身体内部阻抗的实时低空间但高时间分辨率的图像。阻抗恢复本身是一个非线性病态逆问题,因此该问题通常是线性化的,产生的是阻抗变化图像而不是静态阻抗,并且沿目标边界的图像是高度模糊的。当涉及到分割和跟踪EIT肺图像的电导率变化时,我们提供了卡尔曼滤波器高适用性背后的数学推理。接下来,我们使用双重方法来解决分割问题。首先,我们构造了一个全局肺形状来限制卡尔曼滤波器的搜索区域。接下来,我们通过结合自适应前景检测系统来增强卡尔曼滤波器,为卡尔曼滤波器提供边界轮廓,以跟踪肺在呼吸周期中发生变形时的电导率变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信