H. Kawada, H. Yoshida, M. Kamakura, K. Yoshida, M. Saitou, K. Kawahito, S. Tomonari
{"title":"Thermally driven microactuator containing thermal isolation structure with polyimide and its application to microvalve","authors":"H. Kawada, H. Yoshida, M. Kamakura, K. Yoshida, M. Saitou, K. Kawahito, S. Tomonari","doi":"10.1109/SENSOR.2003.1217171","DOIUrl":null,"url":null,"abstract":"We have developed a thermally /spl middot/ isolated bimorph structure based on a silicon (Si) /nickel (Ni) pair. A 2.5-mm-long beam of the bimorph was thermally isolated by a polyimide comb from the rest of the Si structure. The Si and Ni layers of the bimorph were 30 /spl mu/m and 25 /spl mu/m thick, respectively. This geometry enabled us to generate the bending displacement (the stroke) of the free end of the bimorph up to 100 /spl mu/m at about 100 /spl deg/C with a generated force of about 15 mN. A low-voltage actuation (<3V) and low-energy consumption (<0.2W) were achieved. Besides, the miniaturized Si/Ni bimorph actuator was incorporated into the valve structure. The actual size of the fabricated valve is 7.3/spl times/5.8/spl times/1.2 mm/sup 3/. The flow rate from 0 to 500 ml/min at the air pressure of 47 kPa with low leakage rate of 0.03 ml/min and good linearity of the air pressure control were achieved.","PeriodicalId":196104,"journal":{"name":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2003.1217171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We have developed a thermally /spl middot/ isolated bimorph structure based on a silicon (Si) /nickel (Ni) pair. A 2.5-mm-long beam of the bimorph was thermally isolated by a polyimide comb from the rest of the Si structure. The Si and Ni layers of the bimorph were 30 /spl mu/m and 25 /spl mu/m thick, respectively. This geometry enabled us to generate the bending displacement (the stroke) of the free end of the bimorph up to 100 /spl mu/m at about 100 /spl deg/C with a generated force of about 15 mN. A low-voltage actuation (<3V) and low-energy consumption (<0.2W) were achieved. Besides, the miniaturized Si/Ni bimorph actuator was incorporated into the valve structure. The actual size of the fabricated valve is 7.3/spl times/5.8/spl times/1.2 mm/sup 3/. The flow rate from 0 to 500 ml/min at the air pressure of 47 kPa with low leakage rate of 0.03 ml/min and good linearity of the air pressure control were achieved.