J. Jiang, S. Parikh, Mark Lionbarger, N. Nedovic, T. Yamamoto
{"title":"A DC-46Gb/s 2:1 multiplexer and source-series terminated driver in 20nm CMOS technology","authors":"J. Jiang, S. Parikh, Mark Lionbarger, N. Nedovic, T. Yamamoto","doi":"10.1109/ASSCC.2014.7008939","DOIUrl":null,"url":null,"abstract":"We present a 46Gb/s 2:1 multiplexer and a source series terminated full rate driver for high speed chip-to-chip communications. The multiplexer and the driver are implemented using the pseudo-differential static CMOS circuit. Transmitter driver uses the push-pull structure to produce a VDD peak-to-peak differential voltage swing. The circuit uses no current mode logic gates or large on-chip passive devices aside from series-connected on-chip resistor and the T-coil used to minimize the return loss. We confirmed the total jitter of about 7ps at 46Gb/s and eye opening of 0.605UI up to 50 Gb/s on the test circuit fabricated in 20nm CMOS technology. Measured power consumption is 38.7mW at 46Gb/s (0.84pJ/b power efficiency).","PeriodicalId":161031,"journal":{"name":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2014.7008939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present a 46Gb/s 2:1 multiplexer and a source series terminated full rate driver for high speed chip-to-chip communications. The multiplexer and the driver are implemented using the pseudo-differential static CMOS circuit. Transmitter driver uses the push-pull structure to produce a VDD peak-to-peak differential voltage swing. The circuit uses no current mode logic gates or large on-chip passive devices aside from series-connected on-chip resistor and the T-coil used to minimize the return loss. We confirmed the total jitter of about 7ps at 46Gb/s and eye opening of 0.605UI up to 50 Gb/s on the test circuit fabricated in 20nm CMOS technology. Measured power consumption is 38.7mW at 46Gb/s (0.84pJ/b power efficiency).