A Tuning-Free Hardware Reservoir Based on MOSFET Crossbar Array for Practical Echo State Network Implementation

Yuki Kume, S. Bian, Takashi Sato
{"title":"A Tuning-Free Hardware Reservoir Based on MOSFET Crossbar Array for Practical Echo State Network Implementation","authors":"Yuki Kume, S. Bian, Takashi Sato","doi":"10.1109/ASP-DAC47756.2020.9045694","DOIUrl":null,"url":null,"abstract":"Echo state network (ESN) is a class of recurrent neural network, and is known for drastically reducing the training time by the use of reservoir, a random and fixed network as the input and middle layers. In this paper, we propose a hardware implementation of ESN that uses practical MOSFET-based reservoir. As opposed to existing reservoirs that require additional tuning of network weights for improved stability, our ESN requires no post-training parameter tuning. To this end, we apply the circular law of random matrix to sparse reservoirs to determine a stable and fixed feedback gain. Through the evaluations using Mackey-Glass time-series dataset, the proposed ESN performs successful inference without post parameter tuning.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Echo state network (ESN) is a class of recurrent neural network, and is known for drastically reducing the training time by the use of reservoir, a random and fixed network as the input and middle layers. In this paper, we propose a hardware implementation of ESN that uses practical MOSFET-based reservoir. As opposed to existing reservoirs that require additional tuning of network weights for improved stability, our ESN requires no post-training parameter tuning. To this end, we apply the circular law of random matrix to sparse reservoirs to determine a stable and fixed feedback gain. Through the evaluations using Mackey-Glass time-series dataset, the proposed ESN performs successful inference without post parameter tuning.
用于实际回波状态网络实现的基于MOSFET交叉棒阵列的免调谐硬件存储
回声状态网络(Echo state network, ESN)是一类递归神经网络,其特点是利用随机固定网络库作为输入层和中间层,大大缩短了训练时间。在本文中,我们提出了一种基于mosfet的储层的回声状态网络的硬件实现。与需要额外调整网络权重以提高稳定性的现有储层不同,我们的回声状态网络不需要训练后的参数调整。为此,我们将随机矩阵的循环律应用于稀疏储层,以确定稳定固定的反馈增益。通过使用Mackey-Glass时间序列数据集进行评估,所提出的回声状态网络在没有参数后调优的情况下进行了成功的推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信