Parameterizable FPGA Framework for Particle Filter Based Object Tracking in Video

Pinalkumar Engineer, R. Velmurugan, S. Patkar
{"title":"Parameterizable FPGA Framework for Particle Filter Based Object Tracking in Video","authors":"Pinalkumar Engineer, R. Velmurugan, S. Patkar","doi":"10.1109/VLSID.2015.11","DOIUrl":null,"url":null,"abstract":"Real-time particle filter based object tracking in videos on embedded platforms (FPGA) is challenging because of its resource usage and computational complexity. Furthermore, minor changes to the algorithm will need changes in the hardware. To address these issues, we propose a parametrizable FPGA framework for particle filter based object tracking algorithm. This parametrizable implementation can be used for various image sequences, object sizes and number of particles. By changing few parameters, this parametrization leads to appropriate changes in hardware resources resulting in efficient real-time operation of the algorithm. Experimental results show better tracking from the implementation and the proposed architecture can run particle filter algorithm for a color video sequence with 650 fps on average.","PeriodicalId":123635,"journal":{"name":"2015 28th International Conference on VLSI Design","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSID.2015.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Real-time particle filter based object tracking in videos on embedded platforms (FPGA) is challenging because of its resource usage and computational complexity. Furthermore, minor changes to the algorithm will need changes in the hardware. To address these issues, we propose a parametrizable FPGA framework for particle filter based object tracking algorithm. This parametrizable implementation can be used for various image sequences, object sizes and number of particles. By changing few parameters, this parametrization leads to appropriate changes in hardware resources resulting in efficient real-time operation of the algorithm. Experimental results show better tracking from the implementation and the proposed architecture can run particle filter algorithm for a color video sequence with 650 fps on average.
基于粒子滤波的视频目标跟踪可参数化FPGA框架
在嵌入式平台(FPGA)视频中,基于实时粒子滤波的目标跟踪由于其资源占用和计算复杂性而具有挑战性。此外,对算法的微小更改将需要对硬件进行更改。为了解决这些问题,我们提出了一种基于粒子滤波的目标跟踪算法的可参数化FPGA框架。这种可参数化的实现可用于各种图像序列,对象大小和粒子数量。这种参数化通过改变很少的参数,导致硬件资源的适当改变,从而使算法有效地实时运行。实验结果表明,该算法具有较好的跟踪效果,可以对平均帧数为650 fps的彩色视频序列运行粒子滤波算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信