Deep Supervised Binary Hash Codes for Footprint Image Retrieval

Bao Wenxia, Hu Wei, Liangyu Dong, Wang Nian, Huang Fuxiang
{"title":"Deep Supervised Binary Hash Codes for Footprint Image Retrieval","authors":"Bao Wenxia, Hu Wei, Liangyu Dong, Wang Nian, Huang Fuxiang","doi":"10.1109/ICHCI51889.2020.00038","DOIUrl":null,"url":null,"abstract":"Footprints can provide strong evidence for the detection of criminal cases, and the similarity retrieval of footprint images is generally carried out using hand-extracted image features, which have problems such as low retrieval matching accuracy and slow retrieval speed. In order to solve the above problems, a footprint image retrieval method based on deep supervised binary hash(DSBH) is proposed, and the feature extraction of footprint image is carried out by using the convolutional neural network, which can be combined with the deep hash algorithm to solve the retrieval problem of footprint image. The experimental results can reach 0.980, which proves the effectiveness of this method.","PeriodicalId":355427,"journal":{"name":"2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHCI51889.2020.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Footprints can provide strong evidence for the detection of criminal cases, and the similarity retrieval of footprint images is generally carried out using hand-extracted image features, which have problems such as low retrieval matching accuracy and slow retrieval speed. In order to solve the above problems, a footprint image retrieval method based on deep supervised binary hash(DSBH) is proposed, and the feature extraction of footprint image is carried out by using the convolutional neural network, which can be combined with the deep hash algorithm to solve the retrieval problem of footprint image. The experimental results can reach 0.980, which proves the effectiveness of this method.
用于足迹图像检索的深度监督二进制哈希码
足迹可以为刑事案件的侦破提供强有力的证据,而足迹图像的相似性检索一般采用手工提取的图像特征进行,存在检索匹配精度低、检索速度慢等问题。为了解决上述问题,提出了一种基于深度监督二值哈希(DSBH)的足迹图像检索方法,利用卷积神经网络对足迹图像进行特征提取,并与深度哈希算法相结合,解决足迹图像检索问题。实验结果可达0.980,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信