Ball-Shrinking Genetic Search Algorithm for Finding Central Vertices in Graphs

A. Vlasov, A. Khomchenko, A. Faizliev, S. Mironov
{"title":"Ball-Shrinking Genetic Search Algorithm for Finding Central Vertices in Graphs","authors":"A. Vlasov, A. Khomchenko, A. Faizliev, S. Mironov","doi":"10.2991/ahcs.k.191206.017","DOIUrl":null,"url":null,"abstract":"The paper proposes a genetic algorithm (GA) for finding central vertices in a graph. The algorithm uses a different approach to the method presentation of the solution and describes a new look at the crossover process of GA. The algorithm was compared with existing exact and other genetic algorithms on various random graphs. Empirical results show that this approach can be used in applications and compete with existing algorithms.","PeriodicalId":287734,"journal":{"name":"Proceedings of the Fourth Workshop on Computer Modelling in Decision Making (CMDM 2019)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Workshop on Computer Modelling in Decision Making (CMDM 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ahcs.k.191206.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper proposes a genetic algorithm (GA) for finding central vertices in a graph. The algorithm uses a different approach to the method presentation of the solution and describes a new look at the crossover process of GA. The algorithm was compared with existing exact and other genetic algorithms on various random graphs. Empirical results show that this approach can be used in applications and compete with existing algorithms.
寻找图中中心顶点的球收缩遗传搜索算法
提出了一种寻找图中中心点的遗传算法。该算法采用了一种不同的方法来表示解,并描述了遗传算法交叉过程的新视角。在各种随机图上与现有的精确遗传算法和其他遗传算法进行了比较。实验结果表明,该方法可用于实际应用,并可与现有算法相抗衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信