Improved Tone Reservation Method Based on Deep Learning for PAPR Reduction in OFDM System

Lanping Li, C. Tellambura, Xiaohu Tang
{"title":"Improved Tone Reservation Method Based on Deep Learning for PAPR Reduction in OFDM System","authors":"Lanping Li, C. Tellambura, Xiaohu Tang","doi":"10.1109/WCSP.2019.8928103","DOIUrl":null,"url":null,"abstract":"This paper utilizes deep learning (DL) in tone reservation (TR) to reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM). We propose TR based on DL (DL-TR) algorithm by considering each iteration of the classical TR algorithm as a layer of a deep neural network (DNN), and then train the network offline to obtain the clipping ratio of each layer which can minimize the loss function that is the sum of PAPR and the increased transmit power. Compared with the conventional TR method, the simulation results show that the proposed DL-TR provides a better PAPR reduction and bit-error-rate (BER) performance.","PeriodicalId":108635,"journal":{"name":"2019 11th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"16 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2019.8928103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper utilizes deep learning (DL) in tone reservation (TR) to reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM). We propose TR based on DL (DL-TR) algorithm by considering each iteration of the classical TR algorithm as a layer of a deep neural network (DNN), and then train the network offline to obtain the clipping ratio of each layer which can minimize the loss function that is the sum of PAPR and the increased transmit power. Compared with the conventional TR method, the simulation results show that the proposed DL-TR provides a better PAPR reduction and bit-error-rate (BER) performance.
基于深度学习的改进OFDM系统PAPR降低的音调保留方法
本文将深度学习(DL)应用于语音保留(TR)中,以降低正交频分复用(OFDM)的峰均功率比(PAPR)。本文提出了基于深度神经网络(deep neural network, DNN)的DL-TR算法,将经典TR算法的每次迭代视为深度神经网络(deep neural network, DNN)的一层,然后对网络进行离线训练,得到每层的裁剪比,使损失函数(PAPR和增加的发射功率之和)最小。仿真结果表明,与传统的TR方法相比,DL-TR方法具有更好的PAPR降低和误码率(BER)性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信