Finite element analysis on magnetic force generation of electromagnetic microactuator for micropump

R. Pawinanto, J. Yunas, B. Majlis, A. A. Hamzah
{"title":"Finite element analysis on magnetic force generation of electromagnetic microactuator for micropump","authors":"R. Pawinanto, J. Yunas, B. Majlis, A. A. Hamzah","doi":"10.1109/RSM.2013.6706464","DOIUrl":null,"url":null,"abstract":"In this work, a theoretical analysis on the magnetic force generation of micro-actuator driven by planar microcoil is reported. The actuator design is optimized to increase the magnetic force and flux density that is useful for mechanical membrane deformation of an actuator. Therefore, this work is focused on the design and simulation of actuator material and structure using a finite element analysis method. As the results, the obtained magnetic force of maximum 11.4 mN has been observed for the actuator design having coil geometry of width w = 100 μm, space s =100 μm, turn N = 20 and thickness t =20 μm with NdFeB as magnet material. Hence, the optimized design geometry of the coil can be used as reference for the fabrication of electromagnetic actuator for micropump application.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this work, a theoretical analysis on the magnetic force generation of micro-actuator driven by planar microcoil is reported. The actuator design is optimized to increase the magnetic force and flux density that is useful for mechanical membrane deformation of an actuator. Therefore, this work is focused on the design and simulation of actuator material and structure using a finite element analysis method. As the results, the obtained magnetic force of maximum 11.4 mN has been observed for the actuator design having coil geometry of width w = 100 μm, space s =100 μm, turn N = 20 and thickness t =20 μm with NdFeB as magnet material. Hence, the optimized design geometry of the coil can be used as reference for the fabrication of electromagnetic actuator for micropump application.
微泵电磁微执行器磁力产生的有限元分析
本文对平面微线圈驱动微作动器的磁力产生进行了理论分析。优化了致动器的设计,提高了致动器的磁力和磁通密度,有利于致动器的机械膜变形。因此,本工作重点是利用有限元分析方法对执行器的材料和结构进行设计和仿真。结果表明,以钕铁硼为磁体材料,当线圈几何尺寸为宽度w =100 μm,空间s =100 μm,匝数N =20,厚度t =20 μm时,所获得的磁力最大为11.4 mN。因此,优化设计的线圈几何形状可为微泵电磁致动器的制造提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信