Metadata Traces and Workload Models for Evaluating Big Storage Systems

Cristina L. Abad, Huong Luu, Nathan Roberts, Kihwal Lee, Yi Lu, R. Campbell
{"title":"Metadata Traces and Workload Models for Evaluating Big Storage Systems","authors":"Cristina L. Abad, Huong Luu, Nathan Roberts, Kihwal Lee, Yi Lu, R. Campbell","doi":"10.1109/UCC.2012.27","DOIUrl":null,"url":null,"abstract":"Efficient namespace metadata management is increasingly important as next-generation file systems are designed for peta and exascales. New schemes have been proposed, however, their evaluation has been insufficient due to a lack of appropriate namespace metadata traces. Specifically, no Big Data storage system metadata trace is publicly available and existing ones are a poor replacement. We studied publicly available traces and one Big Data trace from Yahoo! and note some of the differences and their implications to metadata management studies. We discuss the insufficiency of existing evaluation approaches and present a first step towards a statistical metadata workload model that can capture the relevant characteristics of a workload and is suitable for synthetic workload generation. We describe Mimesis, a synthetic workload generator, and evaluate its usefulness through a case study in a least recently used metadata cache for the Hadoop Distributed File System. Simulation results show that the traces generated by Mimesis mimic the original workload and can be used in place of the real trace providing accurate results.","PeriodicalId":122639,"journal":{"name":"2012 IEEE Fifth International Conference on Utility and Cloud Computing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Utility and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC.2012.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Efficient namespace metadata management is increasingly important as next-generation file systems are designed for peta and exascales. New schemes have been proposed, however, their evaluation has been insufficient due to a lack of appropriate namespace metadata traces. Specifically, no Big Data storage system metadata trace is publicly available and existing ones are a poor replacement. We studied publicly available traces and one Big Data trace from Yahoo! and note some of the differences and their implications to metadata management studies. We discuss the insufficiency of existing evaluation approaches and present a first step towards a statistical metadata workload model that can capture the relevant characteristics of a workload and is suitable for synthetic workload generation. We describe Mimesis, a synthetic workload generator, and evaluate its usefulness through a case study in a least recently used metadata cache for the Hadoop Distributed File System. Simulation results show that the traces generated by Mimesis mimic the original workload and can be used in place of the real trace providing accurate results.
评估大型存储系统的元数据跟踪和工作负载模型
高效的名称空间元数据管理变得越来越重要,因为下一代文件系统是为peta和exascale设计的。已经提出了新的方案,但是,由于缺乏适当的名称空间元数据跟踪,它们的评估还不够充分。具体来说,没有公开的大数据存储系统元数据跟踪,现有的是一个很差的替代品。我们研究了公开可用的痕迹和雅虎的一个大数据痕迹。并注意其中的一些差异及其对元数据管理研究的影响。我们讨论了现有评估方法的不足,并提出了迈向统计元数据工作负载模型的第一步,该模型可以捕获工作负载的相关特征,并适用于合成工作负载生成。我们描述了Mimesis,一个合成工作负载生成器,并通过一个最近最少使用Hadoop分布式文件系统的元数据缓存的案例研究来评估它的有用性。仿真结果表明,Mimesis生成的迹线模拟了原始的工作负载,可以代替真实的迹线,提供准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信