Donghyun Kim, Steven Jens Jorgensen, Hochul Hwang, L. Sentis
{"title":"Control Scheme and Uncertainty Considerations for Dynamic Balancing of Passive-Ankled Bipeds and Full Humanoids","authors":"Donghyun Kim, Steven Jens Jorgensen, Hochul Hwang, L. Sentis","doi":"10.1109/HUMANOIDS.2018.8624915","DOIUrl":null,"url":null,"abstract":"We propose a methodology for dynamically balancing passive-ankled bipeds and full humanoids. As dynamic locomotion without ankle-actuation is more difficult than with actuated feet, our control scheme adopts an efficient whole-body controller that combines inverse kinematics, contact-consistent feed-forward torques, and low-level motor position controllers. To understand real-world sensing and controller requirements, we perform an uncertainty analysis on the linear-inverted-pendulum (LIP)-based footstep planner. This enables us to identify necessary hardware and control refinements to demonstrate that our controller can achieve long-term unsupported dynamic balancing on our series-elastic biped, Mercury. Through simulations, we also demonstrate that our control scheme for dynamic balancing with passive-ankles is applicable to full humanoid robots.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2018.8624915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We propose a methodology for dynamically balancing passive-ankled bipeds and full humanoids. As dynamic locomotion without ankle-actuation is more difficult than with actuated feet, our control scheme adopts an efficient whole-body controller that combines inverse kinematics, contact-consistent feed-forward torques, and low-level motor position controllers. To understand real-world sensing and controller requirements, we perform an uncertainty analysis on the linear-inverted-pendulum (LIP)-based footstep planner. This enables us to identify necessary hardware and control refinements to demonstrate that our controller can achieve long-term unsupported dynamic balancing on our series-elastic biped, Mercury. Through simulations, we also demonstrate that our control scheme for dynamic balancing with passive-ankles is applicable to full humanoid robots.