{"title":"Software failure probability quantification for system risk assessment","authors":"Hyun Gook Kang, H. Eom, H. Son","doi":"10.3814/2009/163456","DOIUrl":null,"url":null,"abstract":"Risk caused by safety-critical I&C systems considerably affects overall plant risk. Software failures in digitalized I&C systems must be considered as the cause of risk. As digitalization of safety-critical systems progresses, the need for software failure probability quantification increases. For the software of safety-critical systems, very high reliability is required. This article aims at providing an overview of promising software failure probability quantification models for this kind of safety-critical system: The software reliability growth model (SRGM), the input-domain-based test model (IDBT), and the validation/verification quality model (VVQM). In order to accommodate the characteristics of safety-critical systems, a more effective framework of practical risk assessment applications is necessary. In this article, we propose the combined use of SRGM&VVQM for a more systematic and traceable method of the failure probability quantification of safety-critical software.","PeriodicalId":169134,"journal":{"name":"Scholarly Research Exchange","volume":"872 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scholarly Research Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3814/2009/163456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Risk caused by safety-critical I&C systems considerably affects overall plant risk. Software failures in digitalized I&C systems must be considered as the cause of risk. As digitalization of safety-critical systems progresses, the need for software failure probability quantification increases. For the software of safety-critical systems, very high reliability is required. This article aims at providing an overview of promising software failure probability quantification models for this kind of safety-critical system: The software reliability growth model (SRGM), the input-domain-based test model (IDBT), and the validation/verification quality model (VVQM). In order to accommodate the characteristics of safety-critical systems, a more effective framework of practical risk assessment applications is necessary. In this article, we propose the combined use of SRGM&VVQM for a more systematic and traceable method of the failure probability quantification of safety-critical software.