Software failure probability quantification for system risk assessment

Hyun Gook Kang, H. Eom, H. Son
{"title":"Software failure probability quantification for system risk assessment","authors":"Hyun Gook Kang, H. Eom, H. Son","doi":"10.3814/2009/163456","DOIUrl":null,"url":null,"abstract":"Risk caused by safety-critical I&C systems considerably affects overall plant risk. Software failures in digitalized I&C systems must be considered as the cause of risk. As digitalization of safety-critical systems progresses, the need for software failure probability quantification increases. For the software of safety-critical systems, very high reliability is required. This article aims at providing an overview of promising software failure probability quantification models for this kind of safety-critical system: The software reliability growth model (SRGM), the input-domain-based test model (IDBT), and the validation/verification quality model (VVQM). In order to accommodate the characteristics of safety-critical systems, a more effective framework of practical risk assessment applications is necessary. In this article, we propose the combined use of SRGM&VVQM for a more systematic and traceable method of the failure probability quantification of safety-critical software.","PeriodicalId":169134,"journal":{"name":"Scholarly Research Exchange","volume":"872 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scholarly Research Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3814/2009/163456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Risk caused by safety-critical I&C systems considerably affects overall plant risk. Software failures in digitalized I&C systems must be considered as the cause of risk. As digitalization of safety-critical systems progresses, the need for software failure probability quantification increases. For the software of safety-critical systems, very high reliability is required. This article aims at providing an overview of promising software failure probability quantification models for this kind of safety-critical system: The software reliability growth model (SRGM), the input-domain-based test model (IDBT), and the validation/verification quality model (VVQM). In order to accommodate the characteristics of safety-critical systems, a more effective framework of practical risk assessment applications is necessary. In this article, we propose the combined use of SRGM&VVQM for a more systematic and traceable method of the failure probability quantification of safety-critical software.
用于系统风险评估的软件故障概率量化
由安全关键型I&C系统引起的风险极大地影响了整个工厂的风险。数字化I&C系统中的软件故障必须被视为风险的原因。随着安全关键系统数字化的发展,对软件故障概率量化的需求日益增加。对于安全关键系统的软件,对可靠性的要求非常高。本文旨在概述这类安全关键系统中有前途的软件故障概率量化模型:软件可靠性增长模型(SRGM)、基于输入域的测试模型(IDBT)和验证/验证质量模型(VVQM)。为了适应安全关键系统的特点,需要一个更有效的实际风险评估应用框架。在本文中,我们提出了SRGM&VVQM的组合使用,为安全关键软件的故障概率量化提供了一种更系统和可追溯的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信